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A NONLINEAR PERIODIC SYSTEM WITH NONSMOOTH

POTENTIAL OF INDEFINITE SIGN

MICHAEL E. FILIPPAKIS AND NIKOLAOS S. PAPAGEORGIOU

Abstract. In this paper we consider a nonlinear periodic system driven by
the vector ordinary p-Laplacian and having a nonsmooth locally Lipschitz
potential, which is positively homogeneous. Using a variational approach
which exploits the homogeneity of the potential, we establish the existence of
a nonconstant solution.

1. Introduction

In this paper we study the following nonlinear periodic system with nonsmooth
potential

(1.1)

{
−

(
‖x′(t)‖p−2x′(t)

)′
∈ ∂j

(
t, x(t)

)
a.e. on T = [0, b]

x(0) = x(b), x′(0) = x′(b), 1 < p <∞ .

}

Here the potential function x → j(t, x) is only locally Lipschitz not necessar-
ily C1 and by ∂j(t, x) we denote the generalized (Clarke) subdifferential of j(t, ·)
(see Section 2). The purpose of this work is to establish the existence of nontriv-
ial solutions, when the potential is indefinite in sign. In the past this problem
has been addressed only in the context of semilinear (i.e. p = 2), smooth (i.e.
j(t, ·) ∈ C1

(
R

N,R)
)

systems. We refer to the works of Lassoued [10],[11], Ben
Naoum-Troestler-Willem [5], Girardi-Matzeu [9], Antonacci [4], Xu-Guo [14] and
Tang-Wu [13]. In Lassoued [10],[11] the potential has the form j(t, x) = b(t)V (x)
where b ∈ L1(T ) with changing sign and V ∈ C2(RN,R) is strictly convex and
nonnegative. In Lassoued [10] V is subquadratic, while in Lassoued [11] V is pos-
itively homogeneous of degree θ > 2 (hence V is superquadratic). Her approach
is based on the dual action principle of Clarke and on the Lyapunov-Schmidt
reduction method. Girardi-Matzeu [9] also assume that j(t, x) = b(t)V (x) and
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impose on V a kind of generalized Ambrosetti-Rabinowitz condition of the form
|(V ′(x), x)RN −βV (x)| ≤ c‖x‖2 for all x ∈ R

N with β > 2 and c > 0. Antonacci [4]
and Xu-Guo [14] assume that j(t, x) = A(t)x+ b(t)V (x) with A ∈ C(T,RN× N) in-
definite in sign and V ∈ C2(RN,R) superquadratic. The approach in both papers
is similar, variational based on the generalized mountain pass theorem. Finally
in Ben Naoum-Troestler-Willem [5] and Tang-Wu [13] the authors do not assume
the decomposition j(t, x) = b(t)V (x). Instead, Ben Naoum-Troestler-Willem [5]
require that j(t, ·) is positively homogeneous of order θ 6= 2, while in Tang-Wu
[13] j(t, x) = b(t)|x|θ +W (t, x) with θ > 2 and W (t, ·) is sublinear. The approach
in both papers is variational. In Ben Naoum-Troestler-Willem [5] the authors ex-
ploit the homogeneity of the potential, while Tang-Wu [13] employ the generalized
mountain pass theorem. Our work here is closer to that of Ben Naoum-Troestler-
Willem [5], which we extend to systems driven by the vector ordinary p-Laplacian
and having a nonsmooth potential. In the past periodic systems with a nonsmooth
potential were studied by Adly-Goeleven [1], Adly-Goeleven-Motreanu [2], Adly-
Motreanu [3] (semilinear systems) and E. H. Papageorgiou-N. S. Papageorgiou
[12] (nonlinear systems). However, their conditions on the potential function im-
ply that it has definite sign near zero or for large x ∈ R

N. So our work here
appears to have two novel features with respect to the existing relevant literature.
On the one hand is the first work on nonlinear systems monitored by the ordinary
p-Laplacian and with a potential indefinite in sign and on the other hand we do
not assume that the varying sign potential is smooth.

Our approach is variational and uses tools from nonsmooth analysis.

2. Mathematical preliminaries

Let X be a Banach space, X∗ its topological dual and let
〈
·, ·

〉
denote the

duality brackets for the pair. Given a locally Lipschitz function ϕ : X → R, the
generalized directional derivative of ϕ at x ∈ X in the direction h ∈ X, is given by

ϕ0(x;h)
df
= lim sup

x′→x
λ↓0

ϕ(x′ + λh) − ϕ(x′)

λ
.

It is easy to check that ϕ0(x; ·) is sublinear, continuous and so by the Hahn-
Banach Theorem it is the support function of a nonempty, convex and weakly
compact convex set ∂ϕ(x) ⊆ X∗. So

∂ϕ(x)
df
=

{
x∗ ∈ X∗ :

〈
x∗, h

〉
≤ ϕ0(x;h) for all h ∈ X

}
.

The multifunction x→ ∂ϕ(x) is called the generalized (or Clarke) subdifferential

of ϕ. If ϕ is in addition convex, then the generalized subdifferential coincides with
the subdifferential in the sense of convex analysis, which is defined by

∂cϕ(x)
df
=

{
x∗ ∈ X∗ :

〈
x∗, y − x

〉
≤ ϕ(y) − ϕ(x) for all y ∈ X

}
.

If ϕ ∈ C1(X,R), then ∂ϕ(x) = {ϕ′(x)}.
Our hypotheses on the nonsmooth potential function j(t, x) are the following:

H(j)1: j : T × R
N → R is a function such that
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(i) for all x ∈ R
N, t→ j(t, x) is measurable;

(ii) for r > 0 there exists kr ∈ L1(T )+ such that for almost all t ∈ T

and all x, y ∈ R
N with ‖x‖, ‖y‖ ≤ r we have |j(t, x) − j(t, y)| ≤

kr(t)‖x − y‖ and also for almost all t ∈ T, j(t, ·) is homogeneous of
order θ > 1, θ 6= p;

(iii) there exists c1 ∈ L1(T )+ such that for almost all t ∈ T, all ‖x‖ = 1
and all u ∈ ∂j(t, x) we have ‖u‖ ≤ c1(t);

(iv) for all x ∈ R
N, x 6= 0, we have

∫ b

0
j(t, x) dt < 0;

(v) there exists x0 ∈ R
N such that for all t ∈ C, |C|1 > 0 (by | · |1 we

denote the Lebesgue measure on R), we have j(t, x0) > 0.

Remark 2.1. By virtue of the positive homogeneity of j(t, ·) for almost all t ∈ T

(see hypothesis H(j)(ii)), we have j(t, 0) = 0 a.e. on T . Let α1, α2 ∈ L1(T ) such

that
∫ b

0
α1(t) dt ≤ 0,

∫ b

0
α2(t) dt ≤ 0, one of the inequalities is strict and there exist

C ⊆ T with |C|1 > 0 such that for almost all t ∈ C we have α1(t) + α2(t) > 0.
Then the function j : T × R

2 → R defined by j(t, x, y) = α1(t)|x|
3 + α2(t)|x|y

2

satisfies hypothesis H(j).

Proposition 2.2. If hypoheses H(j)(i) and (ii) hold, then for almost all t ∈ T

and all x ∈ R
N, we have j0(t, x;x) = ∂j(t, x) and j0(t, x;−x) = −∂j(t, x).

Proof. For almost all t ∈ T and all x ∈ R
N, by definition we have

j0(t, x;x) = lim sup
x′→x
λ↓0

j(t, x′ + λx) − j(t, x′)

λ

= lim sup
x′→x
λ↓0

[
j(t, x′ + λx) − j(t, x′ + λx′)

λ
+
j(t, x′ + λx′) − j(t, x′)

λ

]

≤ lim sup
x′→x
λ↓0

[
k1(t)‖x− x′‖ +

(1 + λ)θ − 1

λ
j(t, x′)

]

for some k1(t) ∈ L1(T )+ (see hypothesis H(j)1(iii))

= θj(t, x) .(2.1)

On the other hand, note that

j0(t, x;x) ≥ lim sup
λ↓0

j(t, x+ λx) − j(t, x)

λ

= lim sup
λ↓0

[(1 + λ)θ − 1]

λ
j(t, x) = θj(t, x) .

From (2.1) and (2.2) we conclude that for almost all t ∈ T and all x ∈ R
N, we

have
j0(t, x;x) = θj(t, x) .

In a similar fashion we show that for almost all t ∈ T and all x ∈ R
N, we have

j0(t, x,−x) = −θj(t, x) . �
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Next we consider the following minimization problem:

(2.2)






1

p
‖x′‖p

p → inf = m

subject to

∫ b

0

j
(
t, x(t)

)
dt = 1 .

Proposition 2.3. If hypotheses H(j) hold then the feasible set of problem (2.2)
is nonempty.

Proof. Let E = {t ∈ T : j(x, t0) > 0}. By hypothesis H(j)(v) we know

that |E|1 > 0. Let χE(t) =

{
1 if t ∈ T

0 if t ∈ R \ E
(the characteristic function of the

set E). Given ε > 0, consider a mollifier function ϕε ∈ C∞
c (− b

2
, b

2
), ϕε ≥ 0

with suppϕε ⊆ [−ε, ε] and
∫

RN ϕε(t) dt = 1. Extend ϕε by b-periodicity on
R. We know (see for example Denkowski-Migorski-Papagorgiou [7], p.342) that
χεn

= (ϕεn
∗ χE) → χE in L1(T ) as εn ↓ 0 (here ∗ denotes the operation of con-

volution). By passing to a suitable subsequence if necessary, we may assume that
χεn

(t) → χE(t) a.e. on T as εn ↓ 0. Hence, because χεn
≥ 0, we have

χεn
(t)θj(t, x0) = j(t, χεn

(t)x0) → χE(t)j(t, x0) a.e. on T as εn ↓ 0 .

Note that

χεn
(0) =

∫

R

ϕεn
(0 − s)χE(s)ds =

∫

E

ϕεn
(−s)ds

=

∫

E+b

ϕεn
(b− s)ds =

∫

E

ϕεn
(b− s)ds = (ϕεn

∗ χE)(b) = χεn
(b)

⇒ χεn
(·)x0 = yn(·) ∈ C1

per(T,R
N) .

We have
∫ b

0

j
(
t, yn(t)

)
dt →

∫ b

0

j
(
t, χE(t)x0

)
dt =

∫

E

j(t, x0) dt > 0

(see hypotheses H(j)(ii) and (v)).
Therefore we can find n0 ≥ 1 large enough such that

∫ b

0

j
(
t, yn0

(t)
)
dt > 0 .

Then for some λ > 0, we have

λθ

∫ b

0

j
(
t, yn0

(t)
)
dt = 1 ,

⇒

∫ b

0

j
(
t, λyn0

(t)
)
dt = 1

(see hypothesis H(j)(ii)).
Therefore λyn0

∈ C1
per(T,R

N) is a feasible function for the minimization prob-
lem (2.2). �
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Now that we have established the feasibility of problem (2.2), we proceed to
solve it. In what follows W 1,p

per((0, b),R
N) = {x ∈ W 1,p((0, b),RN) : x(0) = x(b)}.

Since W 1,p((0, b),RN) ⊆ C(T,RN), the pointwise evaluations at t = 0 and t = b

make sense.

Proposition 2.4. If hypotheses H(j) hold, then problem (2.2) has a nonconstant

solution x ∈ W 1,p
per((0, b),R

N).

Proof. Evidently m ≥ 0. Let {xn}n≥1 ⊆ W 1,p
per((0, b),R

N) be a minimizing se-
quence for problem (2.2).

We have

1

p
‖x′n‖

p
p ↓ m as n→ ∞ and

∫ b

0

j
(
t, xn(t)

)
dt = 1 for all n ≥ 1 .

Consider the direct sum decomposition

W 1,p
per((0, b),R

N) = R
N ⊕ V with V = {v ∈ W 1,p

per((0, b),R
N) :

∫ b

0

v(t) dt = 0}.

For every n ≥ 1 we have xn = x̄n + x̂n with x̄n ∈ R
N and x̂n ∈ V. Since

{x′n = x̂′n}n≥1 ⊆ Lp(T,RN) is bounded, from the Poincare-Wirtinger inequality
(see for example Denkowski-Migorski-Papageorgiou [7], p.357), we deduce that
{x̂n}n≥1 ⊆W 1,p

per((0, b),R
N) is bounded. Suppose that {xn}n≥1 ⊆W 1,p

per((0, b),R
N)

is unbounded. By passing to a suitable subsequence if necessary, we may assume

that ‖xn‖ → +∞. Set yn =
xn

‖xn‖
, n ≥ 1. Since ‖yn‖ = 1 for all n ≥ 1, we may

assume that

yn
w
→ y in W 1,p

per((0, b),R
N) and yn → y in C(T,RN).

Because {x̂n}n≥1 ⊆W 1,p
per((0, b),R

N) is bounded, we have y ∈ R
N. For all n ≥ 1,

we have

∫ b

0

j
(
t, xn(t)

)
dt = 1 ,

⇒
1

‖xn‖θ

∫ b

0

j
(
t, xn(t)

)
dt =

1

‖xn‖θ
,

⇒

∫ b

0

j
(
t, yn(t)

)
dt =

1

‖xn‖θ
,

⇒

∫ b

0

j(t, y) dt = 0 .

Since y ∈ R
N, from hypothesis H(j)(iv), we infer that y = 0. But then yn → 0

in W 1,p
per

(
(0, b),RN

)
, a contradiction to the fact that ‖yn‖ = 1 for all n ≥ 1. This

proves that {xn}n≥1 ⊆ W 1,p
per

(
(0, b)RN

)
is bounded. Thus we may assume that
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xn
w
→ x in W 1,p

per((0, b),R
N) and xn → x in C(T,RN). So we have

1

p
‖x′‖p

p ≤
1

p
lim inf
n→∞

‖x′n‖
p
p = m and lim

∫ b

0

j
(
t, xn(t)

)
dt =

∫ b

0

j
(
t, x(t)

)
dt = 1 ,

⇒ x ∈W 1,p
per((0, b),R

N) is a solution of (2.2).

Because of hypothesis H(j)(iv), x is nonconstant. �

3. Existence theorem

In this section we prove the existence of a nonconstant solution for problem
(1.1).

Theorem 3.1. If hypotheses H(j) hold, then problem (1.1) has a nonconstant

solution y ∈ C1
per(T,R

N) such that ‖y′‖p−2y′ ∈W 1,1((0, b),RN).

Proof. Let x ∈W 1,p
per((0, b),R

N) be a nonconstant solution of (2.2) (see Proposition

2.4). Consider the integral functional Ij : W 1,p
per((0, b),R

N) → R defined by Ij(y) =
∫ b

0
j
(
t, y(t)

)
dt. Clearly Ij is locally Lipschitz (see hypothesis H(j)(ii)) and for

every u ∈ ∂Ij(y), we have that u ∈ L1(T,RN) and u(t) ∈ ∂j
(
t, y(t)

)
a.e. on T

(see Denkowski-Migorski-Papageorgiou [7], p.617). Also let A : W 1,p
per((0, b),R

N) →

W 1,p
per

(
(0, b),RN

)∗
be the nonlinear operator defined by

〈A(v), y〉 =

∫ b

0

‖v′(t)‖p−2
(
v′(t), y′(t)

)
RN
dt for all v, y ∈W 1,p

per((0, b),R
N) .

It is easy to see that A is monotone, demicontinuous, hence it is maximal mono-
tone (see Denkowski-Migorski-Papageorgiou [8], p.37). Since x ∈ W 1,p

per

(
(0, b),RN

)

is a solution of (2.2), from the nonsmooth multiplier rule of Clarke [6], we can find
β, µ ∈ R, β ≥ 0, not both equal to zero such that

βA(x) + µu = 0 with u ∈ L1(T,RN) u(t) ∈ ∂j
(
t, x(t)

)
a.e. on T .

If β = 0, then µu = 0, hence u ≡ 0 and so j0
(
t, x(t);−x(t)

)
≥ 0 a.e. on T . But

from Proposition 2.2 we know that j0
(
t, x(t);−x(t)

)
= −θj

(
t, x(t)

)
a.e. on T . So

θ
∫ b

0
j
(
t, x(t)

)
dt ≤ 0, a contradiction to the fact that

∫ b

0
j
(
t, x(t)

)
dt = 1. So β 6= 0

and without any loss of generality, we may assume that β = 1. So we have

A(x) + µu = 0 ,(3.1)

⇒ ‖x′‖p
p + µ

∫ b

0

(
u(t), x(t)

)
RN
dt = 0 (acting with the test function x) .

Suppose that µ ≥ 0. Then we have

‖x′‖p
p + µ

∫ b

0

j0
(
t, x(t);x(t)

)
dt ≥ 0 ,

⇒ ‖x′‖p
p + µθ ≥ 0(3.2)

(see Proposition (2.2) and recall that
∫ b

0
j
(
t, x(t)

)
dt = 1).
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On the other hand using as a test function −x, from (3.1) we have

− ‖x′‖p
p + µ

∫ b

0

j0
(
t, x(t);−x(t)

)
dt ≥ 0

(since we have assumed that µ ≥ 0),

⇒ −‖x′‖p
p − µθ ≥ 0

(again by Proposition 2.2 and since
∫ b

0
j
(
t, x(t)

)
dt = 1),

⇒ ‖x′‖p
p + µθ ≤ 0 .(3.3)

From (3.2) and (3.3) it follows that

(3.4) ‖x′‖p
p + µθ = 0 .

Since x is nonconstant, ‖x′‖p > 0. Also µ ≥ 0 and θ > 0. All these facts
contradict equality (3.4). Therefore µ < 0. Let x = λy, λ > 0. We have

A(λy) + µu = 0 , u ∈ L1(T,RN) , u(t) ∈ ∂j
(
t, λy(t)

)
a.e. on T .

Note that for all v, h ∈ R
N, because of hypothesis H(j)(ii), we have

λθ−1j0(t, v;h) = lim sup
v′
→v

λ↓0

j(t, λv′ + rλh) − j(t, λv′)

λr
= j0(t, λv;h) ,

⇒ ∂j
(
t, λy(t)

)
= λθ−1∂j

(
t, y(t)

)
for a.a. t ∈ T

and so u(t) = λθ−1v(t) , v(t) ∈ ∂j
(
t, y(t)

)
a.e. on T .

Therefore λp−1A(y) + µλθ−1v = 0. If λ > 0 is such that µλθ−1 = −λp−1, then
A(y) − v = 0. Let ψ ∈ C1

c ((0, b),RN). Since (‖y′‖p−2y′)′ ∈ W−1,q((0, b),RN) =

W
1,p
0 ((0, b),RN)∗

1

p
+

1

q
= 1 (see Denkowski-Migorski-Papageorgiou [7], p.362),

we have

〈−(‖y′‖p−2y′)′, ψ〉0 =

∫ b

0

(
v(t), ψ(t)

)
RN
dt

(by 〈·, ·〉0 we denote the duality brackets for the pair (W 1,p
0 ((0, b),RN),

W−1,q((0, b),RN)). Because C1
c ((0, b),RN) is dense in W

1,p
0 ((0, b),RN), it follows

that

−
(
‖y′(t)‖p−2y′(t)

)′
= v(t) a.e. on T , y(0) = y(b)(3.5)

⇒ ‖y′‖p−2y′ ∈ W 1,1((0, b),RN) ,

hence y′ ∈ C(T,RN), i.e. y ∈ C1(T,RN) .
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Also if w ∈ W 1,p
per((0, b),R

N), we have

〈A(y), w〉 =

∫ b

0

(
v(t), w(t)

)
RN
dt

⇒ 〈−(‖y′‖p−2y′)′, w〉 + ‖y′(b)‖p−2
(
y′(b), w(b)

)
RN

− ‖y′(0)‖p−2
(
y′(0), w(0)

)
RN

=

∫ b

0

(
v(t), w(t)

)
RN
dt (by Green’s identity)

⇒ ‖y′(0)‖p−2
(
y′(0), w′(0)

)
RN

= ‖y′(b)‖p−2
(
y′(b), w′(b)

)
RN

for all w ∈ W 1,p
per

(
(0, b),RN

)
(see (3.5))

⇒ y′(0) = y′(b) .

So y ∈ C1(T,RN) is a nonconstant solution of (1.1) with ‖y′‖p−2y′ ∈ W 1,1
(
(0, b),RN

)
. �
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