Previous |  Up |  Next

Article

Keywords:
Lebesgue (signed) measure; polynomial; random vector; real affine variety
Summary:
In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb {R}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb {R}$-linearly independent polynomials in the polynomial ring $\mathbb {R}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb {R}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied.
References:
[1] Arens R.: On sandwich slicing. Topology (Proc. Fourth Colloq., Budapest, 1978), vol. I, 57–60, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980. MR 0588764
[2] Borsuk K.: Drei Sätze über die $n$-dimensionale euklidische Sphäre. Fund. Math. 20 (1933), 177–190. Zbl 0006.42403
[3] Dugundij J., Granas A.: Fixed point theory, Vol.I. Monografie Matematyczne 61, PWN, Warsaw 1982.
[4] Gray B.: Homotopy theory. New York, San Francisco, London 1975. MR 0402714 | Zbl 0322.55001
[5] Halmos P. R.: Measure theory. Toronto, New York, London 1950. MR 0033869 | Zbl 0040.16802
[6] Hill T.: Hyperplane medians for random vectors. Amer. Math. Monthly 95 (5) (1988), 437–441. MR 0937533 | Zbl 0643.60011
[7] Hobby C. R., Rice J. R.: A moment problem in $L_1$-approximation. Proc. Amer. Math. Soc. 16 (1965), 665–670. MR 0178292
[8] Pinkus A.: A simple proof of the Hobby-Rice theorem. Proc. Amer. Math. Soc. 60 (1976), 82–84. MR 0425470
[9] Peters J. V.: The ham sandwich theorem for some related results. Rocky Mountain J. Math. 11 (3) (1981), 473–482. MR 0722580
[10] Steinhaus H.: Sur la division des ensembles de l’espace par les plans et des ensembles plans par les cercles. Fund. Math. 33 (1945), 245–263. MR 0017514 | Zbl 0061.38404
[11] Steinhaus H.: Kalejdoskop matematyczny. PWN, Warszawa (1956).
[12] Steinlein H.: Spheres and symmetry, Borsuk’s antipodal theorem. Topol. Methods Nonlinear Anal. 1 (1993), 15–33. MR 1215255 | Zbl 0795.55004
[13] Stone A., Tukey J. W.: Generalized “sandwich” theorems. Duke Math. J. 9 (1942), 356–359. MR 0007036 | Zbl 0061.38405
Partner of
EuDML logo