[1] Arens R.:
On sandwich slicing. Topology (Proc. Fourth Colloq., Budapest, 1978), vol. I, 57–60, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980.
MR 0588764
[2] Borsuk K.:
Drei Sätze über die $n$-dimensionale euklidische Sphäre. Fund. Math. 20 (1933), 177–190.
Zbl 0006.42403
[3] Dugundij J., Granas A.: Fixed point theory, Vol.I. Monografie Matematyczne 61, PWN, Warsaw 1982.
[6] Hill T.:
Hyperplane medians for random vectors. Amer. Math. Monthly 95 (5) (1988), 437–441.
MR 0937533 |
Zbl 0643.60011
[7] Hobby C. R., Rice J. R.:
A moment problem in $L_1$-approximation. Proc. Amer. Math. Soc. 16 (1965), 665–670.
MR 0178292
[8] Pinkus A.:
A simple proof of the Hobby-Rice theorem. Proc. Amer. Math. Soc. 60 (1976), 82–84.
MR 0425470
[9] Peters J. V.:
The ham sandwich theorem for some related results. Rocky Mountain J. Math. 11 (3) (1981), 473–482.
MR 0722580
[10] Steinhaus H.:
Sur la division des ensembles de l’espace par les plans et des ensembles plans par les cercles. Fund. Math. 33 (1945), 245–263.
MR 0017514 |
Zbl 0061.38404
[11] Steinhaus H.: Kalejdoskop matematyczny. PWN, Warszawa (1956).
[12] Steinlein H.:
Spheres and symmetry, Borsuk’s antipodal theorem. Topol. Methods Nonlinear Anal. 1 (1993), 15–33.
MR 1215255 |
Zbl 0795.55004
[13] Stone A., Tukey J. W.:
Generalized “sandwich” theorems. Duke Math. J. 9 (1942), 356–359.
MR 0007036 |
Zbl 0061.38405