Previous |  Up |  Next

Article

Keywords:
Banach algebra; fixed point theorem; integral equations
Summary:
In this paper, some new fixed point theorems concerning the nonlinear alternative of Leray-Schauder type are proved in a Banach algebra. Applications are given to nonlinear functional integral equations in Banach algebras for proving the existence results. Our results of this paper complement the results that appear in Granas et. al. (Granas, A., Guenther, R. B. and Lee, J. W., Some existence principles in the Caratherodony theory of nonlinear differential system, J. Math. Pures Appl. 70 (1991), 153–196.) and Dhage and Regan (Dhage, B. C. and O’Regan, D., A fixed point theorem in Banach algebras with applications to functional integral equations, Funct. Differ. Equ. 7(3-4)(2000), 259–267.).
References:
[1] Browder F. E.: Nonlinear operators and nonlinear equations of evolutions in Banach spaces. Proc. Symp. pure Math. Amer. Math. Soc. Providence, Rhode Island 1976. MR 0405188
[2] Chandrasekhar S.: Radiative Heat Transfer. Dover, New York, 1960. MR 0111583
[3] Deimling K.: Nonlinear Functional Analysis. Springer Verlag, 1985. MR 0787404 | Zbl 0559.47040
[4] Dhage B. C.: On some variants of Schauder’s fixed point principle and applications to nonlinear integral equations. J. Math. Phys. Sci. 25 (1988), 603–611. MR 0967242 | Zbl 0673.47043
[5] Dhage B. C.: A fixed point theorem and applications to nonlinear integral equations. Proc. Internat. Symp. Nonlinear Anal. Appl. Bio-Math., Waltair, India (1987), 53–59.
[6] Dhage B. C.: On $\alpha $-condensing mappings in Banach algebras. The Math. Student 6 (1994), 146–152. MR 1292381 | Zbl 0882.47033
[7] Dhage B. C.: On a fixed point theorem of Krasnoselskii type. Electron. J. Qual. Theory Differ. Equ. 2002, No. 6, 9 pp. (electronic). MR 1895277
[8] Dhage B. C., Ntouyas S. K.: Existence results for nonlinear functional integral equations via a fixed point theorem of Krasnoselskii-Schaefer type. Nonlinear Studies 9(3)(2002), 307–317. MR 1918909
[9] Dhage B. C., Jahagirdar P. G.: On nonlinear integral equations in Banach algebras. Applied Sciences Periodical II (2000), 131–133. MR 1840872
[10] Dhage B. C., O’Regan D.: A fixed point theorem in Banach algebras with applications to functional integral equations. Funct. Differ. Equ. 7(3-4)(2000), 259–267. MR 1940503 | Zbl 1040.45003
[11] Dugundji J., Granas A.: Fixed point theory. Monographie Matematyczne, Warsaw, 1982. Zbl 0483.47038
[12] Granas A., Guenther R. B., Lee J. W.: Some existence principles in the Caratherodony theory of nonlinear differential system. J. Math. Pures Appl. 70 (1991), 153–196. MR 1103033
[13] Nashed M. Z., Wong J. S. W.: Some variants of a fixed point theorem of Krasnoselskii and applications to nonlinear integral equations. J. Math. Mech. 18 (1969), 767–777. MR 0238140
[14] Ntouyas S. K., Tsamatos P. G.: A fixed point theorem of Krasnoselskii-nonlinear alternative type with applications to functional integral equations. Differential Equations Dynam. Systems 7(2) (1999), 139–146. MR 1860784
[15] Subramanyam P. V., Sundarsanam S. K.: A note on functional integral equations. Differential Equations Dynam. Systems 4 (1996), 473–478.
[16] Zeidler E.: Nonlinear Functional Analysis and Its Applications I. Springer Verlag, 1985. MR 0816732
Partner of
EuDML logo