Previous |  Up |  Next

Article

Keywords:
map; fixed point; local intersection property; minimax inequality
Summary:
In this paper fixed point theorems for maps with nonempty convex values and having the local intersection property are given. As applications several minimax inequalities are obtained.
References:
[1] Balaj M.: A variant of a fixed point theorem of Browder and some applications. Math. Montisnigri 9 (1998), 5–13. MR 1657668 | Zbl 0999.47045
[2] Balaj M.: Applications of two matching theorems in generalized convex spaces. Nonlinear Anal. Forum 7 (2002), 123–130. MR 1959938 | Zbl 1034.54016
[3] Ben-El-Mechaiekh H., Deguire P., Granas A.: Point fixes et coincidences pour les applications multivoques. C. R. Acad. Sci. Paris 295 (1982), I 337–340, II 381–384.
[4] Browder F. E.: The fixed point theory of multivalued mappings in topological vector spaces. Math. Ann. 177 (1968), 238–301. MR 0229101
[5] Browder F. E.: Coincidence theorems, minimax theorems and variational inequalities. Conference in Modern Analysis and Probability, New Heaven, Conn., 1982: Contemp. Math. 26, pp. 67–80 (Amer. Math. Soc. Providence, RI., 1984). MR 0737389
[6] Deguire P.: Browder-Fan fixed point theorem and related results. Discuss. Math. Differential Incl. 15 (1995), 149–162. MR 1390397 | Zbl 0931.47041
[7] Deguire P., Lassonde M.: Families sélectantes. Topol. Methods Nonlinear Anal. 5 (1995), 261–269. MR 1374063
[8] Ding X. P.: New H-KKM theorems and equilibria of generalized games. Indian J. Pure Appl. Math. 27 (1996), 1057–1071. MR 1420096
[9] Ding X. P.: A coincidence theorem involving contractible spaces. Appl. Math. Lett. 10 (1997), 53–56. MR 1457639 | Zbl 0879.54055
[10] Fan K.: A generalization of Tichonoff’s fixed point theorems. Math. Ann. 142 (1961), 305–310. MR 0131268
[11] Fan K.: Sur une théorème minimax. C.R. Acad. Sci. Paris 259 (1964), 3925–3928. MR 0174955
[12] Fan K.: A minimax inequality and applications. In: Inequalities III (O. Shisha, ed.), pp. 103–113, Academic Press, New York, 1972. MR 0341029 | Zbl 0302.49019
[13] Himmelberg C. J.: Fixed points of compact multifunctions. J. Math. Anal. Appl. 38 (1972), 205–207. MR 0303368 | Zbl 0225.54049
[14] Lan K., Webb J.: New fixed point theorems for a family of mappings and applications to problems on set with convex sections. Proc. Amer. Math. Soc. 126 (1998), 1127–1132. MR 1451816
[15] Lassonde M.: On the use of KKM multifunctions in fixed point theory and related topics. J. Math. Anal. Appl. 97 (1983), 151–201. MR 0721236 | Zbl 0527.47037
[16] Mehta G.: Fixed points, equilibria and maximal elements in linear topological spaces. Comment. Math. Univ. Carolin. 28 (1987), 377–385. MR 0904761 | Zbl 0632.47041
[17] Park S.: Generalized Fan-Browder fixed point theorems and their applications. In: Collection of Papers Dedicated to J. G. Park (1989), 164–176. MR 1183001
[18] Sion M.: On general minimax theorems. Pacific J. Math. 8 (1958), 171–176. MR 0097026 | Zbl 0163.38203
[19] Tarafdar E.: On nonlinear variational variational inequalities. Proc. Amer. Math. Soc. 67 (1977), 95–98. MR 0467408
[20] Wu X., Shen S.: A further generalization of Yannelis-Prabhakar’s continous selection theorem and its applications. J. Math. Anal. Appl. 197 (1996), 61–74. MR 1371276
[21] Yannelis N. C., Prabhakar N. D.: Existence of maximal elements and equilibria in linear topological spaces. J. Math. Econom. 12 (1983), 233–245. MR 0743037 | Zbl 0536.90019
Partner of
EuDML logo