Previous |  Up |  Next

Article

Keywords:
fixed point; convex metric space; uniformly convex metric space; strictly convex metric space; best approximation; nonexpansive map
Summary:
We obtain necessary conditions for the existence of fixed point and approximate fixed point of nonexpansive and quasi nonexpansive maps defined on a compact convex subset of a uniformly convex complete metric space. We obtain results on best approximation as a fixed point in a strictly convex metric space.
References:
[1] Aksoy A. G., Khamsi M. A.: Nonstandard methods in fixed point theory. Springer, New York, Berlin, 1990. MR 1066202 | Zbl 0713.47050
[2] Aronszajn N., Panitchpakdi P.: Extension of uniformly continuous transformations and hyper convex metric spaces. Pacific J. Math. 6 (1956), 405–439. MR 0084762
[3] Ayerbe Toledano J. M., Dominguez Benavides T., Lopez Acedo G.: Measures of noncompactness in metric fixed point theory. Birkhauser, Basel, 1997. MR 1483889 | Zbl 0885.47021
[4] Beg I., Azam A.: Fixed points of asymptotically regular multivalued mappings. J. Austral. Math. Soc. Ser. A 53(3) (1992), 313–326. MR 1187851 | Zbl 0765.54036
[5] Beg I., Azam A.: Common fixed points for commuting and compatible maps. Discuss. Math. Differential Incl. 16 (1996), 121–135. MR 1646650 | Zbl 0912.47033
[6] Berard A.: Characterization of metric spaces by the use of their mid sets intervals. Fund. Math. 73 (1971), 1–7. MR 0295300
[7] Blumenthal L. M.: Distance Geometry. Clarendon Press, Oxford, 1953. MR 0054981 | Zbl 0050.38502
[8] Browder F. E.: Nonexpansive nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 0187120
[9] Dotson W. G.: On fixed points of nonexpansive mappings in non convex sets. Proc. Amer. Math. Soc. 38 (1973), 155–156. MR 0313894
[10] Goeble K., Kirk W. A.: Topics in metric fixed point theory. Cambridge Stud. Adv. Math. 28, Cambridge University Press, London, 1990. MR 1074005
[11] Goeble K., Reich S.: Uniform convexity, hyperolic geometry, and nonexpansive mappings. Marcel Dekker, Inc. New York and Basel (1984). MR 0744194
[12] Gohde D.: Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 30 (1995), 251–258. MR 0190718
[13] Habiniak L.: Fixed point theorem and invarient approximation. J. Approx. Theory 56 (1984), 241–244.
[14] Hadzic O.: Almost fixed point and best approximation theorems in H-Spaces. Bull. Austral. Math. Soc. 53 (1996), 447–454. MR 1388593
[15] Khalil R.: Extreme points of the unit ball of Banach spaces. Math. Rep. Toyama Univ. 4 (1981), 41–45. MR 0627961 | Zbl 0473.46012
[16] Khalil R.: Best approximation in metric spaces. Proc. Amer. Math. Soc. 103 (1988), 579–586. MR 0943087 | Zbl 0652.51019
[17] Kirk W. A.: A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965), 1004–1006. MR 0189009 | Zbl 0141.32402
[18] Menger K.: Untersuchungen über allegemeine Metrik. Math. Ann. 100 (1928), 75–63. MR 1512479
[19] Prus B., Smarzewski R. S.: Strongly unique best approximation and centers in uniformly convex spaces. J. Math. Anal. Appl. 121 (1978), 85–92. MR 0869515
[20] Veeramani P.: On some fixed point theorems on uniformly convex Banach spaces. J. Math. Anal. Appl. 167 (1992), 160–166. MR 1165265 | Zbl 0780.47047
Partner of
EuDML logo