Previous |  Up |  Next

Article

Keywords:
linear second-order differential equation; Appell equation; Kummer equation; uniformly almost-periodic solution; bounded solution; phase
Summary:
The linear differential equation $(q):y''=q(t)y$ with the uniformly almost-periodic function $q$ is considered. Necessary and sufficient conditions which guarantee that all bounded (on $\mathbb{R}$) solutions of $(q)$ are uniformly almost-periodic functions are presented. The conditions are stated by a phase of $(q)$. Next, a class of equations of the type $(q)$ whose all non-trivial solutions are bounded and not uniformly almost-periodic is given. Finally, uniformly almost-periodic solutions of the non-homogeneous differential equations $y''=q(t)y+f(t)$ are considered. The results are applied to the Appell and Kummer differential equations.
References:
[1] Appell P.: Sur les transformations des équations différentielles linéaires. C. R. Acad. Sci. Paris 91 (1880), 211–214.
[2] Beckenbach E. F., Bellman R.: Inequalities. Springer 1961. MR 0158038 | Zbl 0186.09606
[3] Borůvka O.: Linear differential transformations of the second order. The English Univ. Press, London 1971. MR 0463539
[4] Borůvka O.: Sur les blocs des équations différentielles $y^{\prime \prime }=q(t)y$ aux coefficients périodiques. Rend. Mat. 8 (1975), 519–532. MR 0379945 | Zbl 0326.34007
[5] Borůvka O.: The theory of global properties of second-order ordinary differential equations. Differentsial’nye Uravneniya, 12 (1976), 1347–1383. (in Russian). MR 0440123
[6] Corduneanu C.: Almost Periodic Functions. Wiley, New York 1968. MR 0481915 | Zbl 0175.09101
[7] Fink M. A.: Almost periodic differential equations. Springer, New York – Berlin 1974. MR 0460799 | Zbl 0325.34039
[8] Guter R. S., Kudryavtsev L. D., Levitan B. M.: Elements of the theory of functions. Pergamon Press, Oxford 1966. MR 0197232 | Zbl 0133.30401
[9] Greguš M.: Linear differential equations of the third order. North Holland, Reider Co., Dordrecht-Boston-Lancaster 1986.
[10] Haraux A.: A simple almost-periodicity criterion and applications. J. Differential Equations 66 (1987), 51–61. MR 0871570 | Zbl 0608.34049
[11] Hartman P.: Ordinary differential equations. J. Wiley, New York 1964. MR 0171038 | Zbl 0125.32102
[12] Hu Z. S., Mingarelli A. B.: On a question in the theory of almost periodic differential equations. Proc. Amer. Math. Soc. 127 (1999), 2665–2670. MR 1485481 | Zbl 0924.34039
[13] Levitan B. M.: Almost-periodic functions. G.I.T.-T.L., Moscow 1953 (in Russian). MR 0060629 | Zbl 1222.42002
[14] Lillo J. C.: Approximate similarity and almost periodic matrices. Proc. Amer. Math. Soc. 12 (1961), 400-407. MR 0125127 | Zbl 0099.29001
[15] Markus L., Moore R. A.: Oscillation and disconjugacy for linear differential equations with almost periodic coefficients. Acta mathematica 96 (1956), 99-123. MR 0080813 | Zbl 0071.08302
[16] Mingarelli A. B., Pu P. Q., Zheng L.: A Counter-example in the theory of almost periodic differential equations. Rocky Mountain J. Math. 25 (1995), 437–440. MR 1340018 | Zbl 0833.34041
[17] Rudin W.: Principles of Mathematical Analysis. McGraw-Hill, New York 1964. MR 0166310 | Zbl 0148.02903
[18] Staněk S.: On some properties of solutions of the disconjugate equation $y^{\prime \prime }=q(t)y$ with an almost periodic coefficient $q$. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 25 (1986), 31–56. MR 0918368 | Zbl 0644.34039
Partner of
EuDML logo