[1] Agarwal R. P., O’Regan D.:
Set valued mappings With applications in nonlinear analysis. Taylor & Francis, London 2002.
MR 1938034 |
Zbl 0996.00018
[2] Andres J.:
Nielsen number and multiplicity results for multivalued boundary value problems. Boston MA, Birkhäuser, Progr. Nonlinear Differ. Equ. Appl. 43 (2001), 175–187.
MR 1800619 |
Zbl 0996.34012
[3] Andres J., Bader R.:
Asymptotic boundary value problems in Banach spaces. J. Math. Anal. Appl. 274 (2002), 437–457.
MR 1936707 |
Zbl 1025.34059
[4] Anichini G.:
Boundary value problems for multivalued differential equations and controllability. J. Math. Anal. Appl. 105 (1985), 372–382.
MR 0778472
[5] Anichini G., Conti G.: Boundary value problems for systems of differential equations. Nonlinearity 1 (1988), 1–10.
[6] Aubin J. P., Cellina A.:
Differential inclusions, Set-valued maps and viability theory. Springer Verlag, New York 1984.
MR 0755330 |
Zbl 0538.34007
[7] Bernfeld S., Lakshmikantham V.:
An introduction to nonlinear boundary value Problems. Academic Press, New York 1974.
MR 0445048 |
Zbl 0286.34018
[9] Deimling K.:
Multivalued differential equations and dry friction problems. in Delay and Differential Equations, (A. M. Fink, R. K. Miller and W. Kliemann, Eds.), 99–106, World Scientific Publ.,N. J. 1992.
MR 1170147 |
Zbl 0820.34009
[10] Frigon M.:
Application de la transversalite topologique a des problemes non lineaires pour des equations differentielles ordinaires. Dissertationes Math. 296, PWN, Warsaw 1990.
MR 1075674
[12] Granas A., Frigon M.:
Topological methods in differential equations and inclusions. Kluwer Academic Publ., Dordrecht 1995.
MR 1368668 |
Zbl 0829.00024
[13] Hu S., Papageorgiou N. S.:
Handbook of multivalued analysis. 2 Applications, Kluwer Acad. Publ. Dordrecht 2000.
MR 1741926 |
Zbl 0943.47037
[14] Lasota A., Opial Z.:
An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786.
MR 0196178 |
Zbl 0151.10703
[15] Medved M.:
A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. Appl. 214 (1997), 349–366.
MR 1475574 |
Zbl 0893.26006
[16] Miller L. E.:
Generalized boundary value problems. J. Math. Anal. Appl. 74 (1980), 233–246.
MR 0568383 |
Zbl 0431.34022
[17] O’Regan D.:
Fixed-point theory for the sum of two operators. Applied Math. Letters 9 1 (1996), 1–8.
Zbl 0858.34049
[18] Pruzko T.:
Topological degree methods in multivalued boundary value problems. Nonlinear Anal. T. M. A. 5 9 (1982), 959–973.
MR 0633011
[19] Senkyrík M., Guenther R.:
Boundary value problems with discontinuities in the spacial variable. J. Math. Anal. Appl. 193 (1995), 296–305.
MR 1338514