Previous |  Up |  Next

Article

Keywords:
unit ideal-stable range; symmetry
Summary:
In this paper, we prove that unit ideal-stable range condition is right and left symmetric.
References:
[1] Chen H.: Extensions of unit $1$-stable range. Comm. Algebra 32 (2004), 3071–3085. MR 2102167 | Zbl 1068.16009
[2] Menal P., Moncasi J.: $K_1$ of von Neumann regular rings. J. Pure Appl. Algebra 33 (1984), 295–312. MR 0761635
[3] You H.: $K_2(R,I)$ of unit $1$-stable ring. Chin. Sci. Bull. 35 (1990), 1590–1595. MR 1206598
[4] Chen H.: Rings with stable range conditions. Comm. Algebra 26 (1998), 3653–3668. MR 1647098 | Zbl 0914.16002
[5] Chen H.: Exchange rings with artinian primitive factors. Algebra Represent. Theory 2 (1999), 201–207. MR 1702275 | Zbl 0960.16009
[6] Chen H.: Exchange rings satisfying unit $1$-stable range. Kyushu J. Math. 54 (2000), 1–6. MR 1762788 | Zbl 0999.16004
[7] Chen H., Li F.: Exchange rings satisfying ideal-stable range one. Sci. China Ser. A 44 (2001), 580–586. MR 1843753
[8] Chen H.: Morita contexts with generalized stable conditions. Comm. Algebra 30 (2002), 2699–2713. MR 1908234 | Zbl 1008.16008
[9] Yu H. P.: Stable range one for exchange rings. J. Pure Appl. Algebra 98 (1995), 105–109. MR 1317002 | Zbl 0837.16009
[10] Chen H., Chen M.: On unit $1$-stable range. J. Appl. Algebra $\&$ Discrete Structures 1 (2003), 189–196. MR 2013280
Partner of
EuDML logo