[1] Abbassi K. M. T.:
Note on the classification Theorems of $g$-natural metrics on the tangent bundle of a Riemannian manifold $(M,g)$. Comment. Math. Univ. Carolin. 45 4 (2004), 591–596.
MR 2103077 |
Zbl 1097.53013
[2] Abbassi K. M. T., Sarih M.: On the differential geometry of the tangent and the tangent sphere bundles with Cheeger-Gromoll metric. preprint.
[3] Abbassi K. M. T., Sarih M.:
Killing vector fields on tangent bundles with Cheeger-Gromoll metric. Tsukuba J. Math. 27 (2) (2003), 295–306.
MR 2025729 |
Zbl 1060.53019
[4] Abbassi K. M. T., Sarih M.: The Levi-Civita connection of Riemannian natural metrics on the tangent bundle of an oriented Riemannian manifold. preprint.
[5] Abbassi K. M. T., Sarih M.: On Riemannian $g$-natural metrics of the form $a\cdot g^s +b\cdot g^h +c\cdot g^v$ on the tangent bundle of a Riemannian manifold $(M,g)$ . to appear in Mediter. J. Math.
[6] Besse A. L.:
Manifolds all of whose geodesics are closed. Ergeb. Math. (93), Springer-Verlag, Berlin, Heidelberg, New York 1978.
MR 0496885 |
Zbl 0387.53010
[7] Borisenko A. A., Yampol’skii A. L.:
Riemannian geometry of fiber bundles. Russian Math. Surveys 46 (6) (1991), 55–106.
MR 1164201
[8] Cheeger J., Gromoll D.:
On the structure of complete manifolds of nonnegative curvature. Ann. of Math. (2) 96 (1972), 413–443.
MR 0309010 |
Zbl 0246.53049
[9] Dombrowski P.:
On the geometry of the tangent bundle. J. Reine Angew. Math. 210 (1962), 73–82.
MR 0141050 |
Zbl 0105.16002
[10] Epstein D. B. A.:
Natural tensors on Riemannian manifolds. J. Differential Geom. 10 (1975), 631–645.
MR 0415531 |
Zbl 0321.53039
[11] Epstein D. B. A., Thurston W. P.:
Transformation groups and natural bundles. Proc. London Math. Soc. 38 (1979), 219–236.
MR 0531161 |
Zbl 0409.58001
[12] Kobayashi S., Nomizu K.:
Foundations of differential geometry. Intersci. Pub. New York (I, 1963 and II, 1967).
MR 0152974 |
Zbl 0119.37502
[13] Kolář I., Michor P. W., Slovák J.:
Natural operations in differential geometry. Springer-Verlag, Berlin 1993.
MR 1202431 |
Zbl 0782.53013
[14] Kowalski O.:
Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold. J. Reine Angew. Math. 250 (1971), 124–129.
MR 0286028
[15] Kowalski O., Sekizawa M.:
Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles -a classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29.
MR 0974641 |
Zbl 0656.53021
[16] Kowalski O., Sekizawa M.:
On tangent sphere bundles with small or large constant radius. Ann. Global Anal. Geom. 18 (2000), 207–219.
MR 1795094 |
Zbl 1011.53025
[17] Krupka D., Janyška J.:
Lectures on Differential Invariants. University J. E. Purkyně, Brno 1990.
MR 1108622
[18] Musso E., Tricerri F.:
Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl. (4) 150 (1988), 1–20.
MR 0946027 |
Zbl 0658.53045
[19] Nijenhuis A.:
Natural bundles and their general properties. in Differential Geometry in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 317–334.
MR 0380862 |
Zbl 0246.53018
[20] Palais R. S., Terng C. L.:
Natural bundles have finite order. Topology 16 (1977), 271–277.
MR 0467787 |
Zbl 0359.58004
[21] Sasaki S.:
On the differential geometry of tangent bundles of Riemannian manifolds. Tohôku Math. J. (I, 10 (1958) 338–354; II, 14 (1962) 146–155).
MR 0112152 |
Zbl 0086.15003
[22] Sekizawa M.:
Curvatures of tangent bundles with Cheeger-Gromoll metric. Tokyo J. Math. 14 (2) (1991), 407–417.
MR 1138176 |
Zbl 0768.53020
[23] Slovák J.:
On natural connections on Riemannian manifolds. Comment. Math. Univ. Carolin. 30 (1989), 389–393.
MR 1014139 |
Zbl 0679.53025
[24] Stredder P.:
Natural differential operators on Riemannian manifolds and representations of the orthogonal and the special orthogonal groups. J. Differential Geom. 10 (1975), 647–660.
MR 0415692
[25] Terng C. L.:
Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775–828.
MR 0509074 |
Zbl 0422.58001
[27] Yano K., Ishihara S.:
Tangent and cotangent bundles. Differential Geometry, Marcel Dekker Inc. New York 1973.
MR 0350650 |
Zbl 0262.53024
[28] Yano K., Kobayashi S.:
Prolongations of tensor fields and connections to tangent bundles. J. Math. Soc. Japan (I, II, 18, (2–3) (1966), III, 19 (1967)).
Zbl 0147.21501