Previous |  Up |  Next

Article

Keywords:
Riemannian manifold; tangent bundle; natural operation; $g$-natural metric; Geodesic flow; incompressibility
Summary:
There is a class of metrics on the tangent bundle $TM$ of a Riemannian manifold $(M,g)$ (oriented , or non-oriented, respectively), which are ’naturally constructed’ from the base metric $g$ [Kow-Sek1]. We call them “$g$-natural metrics" on $TM$. To our knowledge, the geometric properties of these general metrics have not been studied yet. In this paper, generalizing a process of Musso-Tricerri (cf. [Mus-Tri]) of finding Riemannian metrics on $TM$ from some quadratic forms on $OM \times \mathbb {R}^m$ to find metrics (not necessary Riemannian) on $TM$, we prove that all $g$-natural metrics on $TM$ can be obtained by Musso-Tricerri’s generalized scheme. We calculate also the Levi-Civita connection of Riemannian $g$-natural metrics on $TM$. As application, we sort out all Riemannian $g$-natural metrics with the following properties, respectively: 1) The fibers of $TM$ are totally geodesic. 2) The geodesic flow on $TM$ is incompressible. We shall limit ourselves to the non-oriented situation.
References:
[1] Abbassi K. M. T.: Note on the classification Theorems of $g$-natural metrics on the tangent bundle of a Riemannian manifold $(M,g)$. Comment. Math. Univ. Carolin. 45 4 (2004), 591–596. MR 2103077 | Zbl 1097.53013
[2] Abbassi K. M. T., Sarih M.: On the differential geometry of the tangent and the tangent sphere bundles with Cheeger-Gromoll metric. preprint.
[3] Abbassi K. M. T., Sarih M.: Killing vector fields on tangent bundles with Cheeger-Gromoll metric. Tsukuba J. Math. 27 (2) (2003), 295–306. MR 2025729 | Zbl 1060.53019
[4] Abbassi K. M. T., Sarih M.: The Levi-Civita connection of Riemannian natural metrics on the tangent bundle of an oriented Riemannian manifold. preprint.
[5] Abbassi K. M. T., Sarih M.: On Riemannian $g$-natural metrics of the form $a\cdot g^s +b\cdot g^h +c\cdot g^v$ on the tangent bundle of a Riemannian manifold $(M,g)$ . to appear in Mediter. J. Math.
[6] Besse A. L.: Manifolds all of whose geodesics are closed. Ergeb. Math. (93), Springer-Verlag, Berlin, Heidelberg, New York 1978. MR 0496885 | Zbl 0387.53010
[7] Borisenko A. A., Yampol’skii A. L.: Riemannian geometry of fiber bundles. Russian Math. Surveys 46 (6) (1991), 55–106. MR 1164201
[8] Cheeger J., Gromoll D.: On the structure of complete manifolds of nonnegative curvature. Ann. of Math. (2) 96 (1972), 413–443. MR 0309010 | Zbl 0246.53049
[9] Dombrowski P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 (1962), 73–82. MR 0141050 | Zbl 0105.16002
[10] Epstein D. B. A.: Natural tensors on Riemannian manifolds. J. Differential Geom. 10 (1975), 631–645. MR 0415531 | Zbl 0321.53039
[11] Epstein D. B. A., Thurston W. P.: Transformation groups and natural bundles. Proc. London Math. Soc. 38 (1979), 219–236. MR 0531161 | Zbl 0409.58001
[12] Kobayashi S., Nomizu K.: Foundations of differential geometry. Intersci. Pub. New York (I, 1963 and II, 1967). MR 0152974 | Zbl 0119.37502
[13] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry. Springer-Verlag, Berlin 1993. MR 1202431 | Zbl 0782.53013
[14] Kowalski O.: Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold. J. Reine Angew. Math. 250 (1971), 124–129. MR 0286028
[15] Kowalski O., Sekizawa M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles -a classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. MR 0974641 | Zbl 0656.53021
[16] Kowalski O., Sekizawa M.: On tangent sphere bundles with small or large constant radius. Ann. Global Anal. Geom. 18 (2000), 207–219. MR 1795094 | Zbl 1011.53025
[17] Krupka D., Janyška J.: Lectures on Differential Invariants. University J. E. Purkyně, Brno 1990. MR 1108622
[18] Musso E., Tricerri F.: Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl. (4) 150 (1988), 1–20. MR 0946027 | Zbl 0658.53045
[19] Nijenhuis A.: Natural bundles and their general properties. in Differential Geometry in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 317–334. MR 0380862 | Zbl 0246.53018
[20] Palais R. S., Terng C. L.: Natural bundles have finite order. Topology 16 (1977), 271–277. MR 0467787 | Zbl 0359.58004
[21] Sasaki S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohôku Math. J. (I, 10 (1958) 338–354; II, 14 (1962) 146–155). MR 0112152 | Zbl 0086.15003
[22] Sekizawa M.: Curvatures of tangent bundles with Cheeger-Gromoll metric. Tokyo J. Math. 14 (2) (1991), 407–417. MR 1138176 | Zbl 0768.53020
[23] Slovák J.: On natural connections on Riemannian manifolds. Comment. Math. Univ. Carolin. 30 (1989), 389–393. MR 1014139 | Zbl 0679.53025
[24] Stredder P.: Natural differential operators on Riemannian manifolds and representations of the orthogonal and the special orthogonal groups. J. Differential Geom. 10 (1975), 647–660. MR 0415692
[25] Terng C. L.: Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775–828. MR 0509074 | Zbl 0422.58001
[26] Willmore T. J.: An introduction to differential geometry. Oxford Univ. Press 1959. MR 0159265 | Zbl 0086.14401
[27] Yano K., Ishihara S.: Tangent and cotangent bundles. Differential Geometry, Marcel Dekker Inc. New York 1973. MR 0350650 | Zbl 0262.53024
[28] Yano K., Kobayashi S.: Prolongations of tensor fields and connections to tangent bundles. J. Math. Soc. Japan (I, II, 18, (2–3) (1966), III, 19 (1967)). Zbl 0147.21501
Partner of
EuDML logo