[1] Chow S. N., Leiva H.:
Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach space. J. Differential Equations 120 (1995), 429–477.
MR 1347351
[2] Chicone C., Latushkin Y.:
Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surveys Monogr. 70, Amer. Math. Soc., 1999.
MR 1707332 |
Zbl 0970.47027
[3] Daleckii J. L., Krein M. G.:
Stability of Solutions of Differential Equations in Banach Spaces. Transl. Math. Monogr. 43, Amer. Math. Soc., Providence, R.I., 1974.
MR 0352639
[4] Datko R.:
Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM J. Math. Anal. 3 (1972), 428–445.
MR 0320465 |
Zbl 0241.34071
[6] Megan M., Sasu B., Sasu A. L.:
On uniform exponential stability of evolution families. Riv. Mat. Univ. Parma 4 (2001), 27–43.
MR 1878009 |
Zbl 1003.34045
[7] Megan M., Sasu A. L., Sasu B.:
Nonuniform exponential instability of evolution operators in Banach spaces. Glas. Mat. Ser. III 56 (2001), 287–295.
MR 1884449
[8] Megan M., Sasu B., Sasu A. L.:
On nonuniform exponential dichotomy of evolution operators in Banach spaces. Integral Equations Operator Theory 44 (2002), 71–78.
MR 1913424 |
Zbl 1034.34056
[9] Megan M., Sasu A. L., Sasu B.:
On uniform exponential stability of linear skew- -product semiflows in Banach spaces. Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143–154.
MR 1905653 |
Zbl 1032.34046
[10] Megan M., Sasu A. L., Sasu B.:
Discrete admissibility and exponential dichotomy for evolution families. Discrete Contin. Dynam. Systems 9 (2003), 383–397.
MR 1952381 |
Zbl 1032.34048
[11] Megan M., Sasu A. L., Sasu B.:
Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows. Bull. Belg. Mat. Soc. Simon Stevin 10 (2003), 1–21.
MR 2032321 |
Zbl 1045.34022
[12] Megan M., Sasu A. L., Sasu B.:
Perron conditions for uniform exponential expansiveness of linear skew-product flows. Monatsh. Math. 138 (2003), 145–157.
MR 1964462 |
Zbl 1023.34043
[13] Megan M., Sasu B., Sasu A. L.:
Exponential expansiveness and complete admissibility for evolution families. Czech. Math. J. 53 (2003).
MR 2086730 |
Zbl 1080.34546
[14] Megan M., Sasu A. L., Sasu B.:
Perron conditions for pointwise and global exponential dichotomy of linear skew-product flows. accepted for publication in Integral Equations Operator Theory.
MR 2105960 |
Zbl 1064.34035
[15] Megan M., Sasu A. L., Sasu B.:
Theorems of Perron type for uniform exponential stability of linear skew-product semiflows. accepted for publication in Dynam. Contin. Discrete Impuls. Systems.
Zbl 1079.34047
[16] van Minh N., Räbiger F., Schnaubelt R.:
Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line. Integral Equations Operator Theory 32 (1998), 332–353.
MR 1652689 |
Zbl 0977.34056
[17] van Neerven J. M. A. M.:
Exponential stability of operators and operator semigroups. J. Funct. Anal. 130 (1995), 293–309.
MR 1335382 |
Zbl 0832.47034
[18] van Neerven J. M. A. M.:
The Asymptotic Behaviour of Semigroups of Linear Operators. Operator Theory Adv. Appl. 88, Birkhäuser, Bassel, 1996.
MR 1409370 |
Zbl 0905.47001
[20] Zabczyk J.:
Remarks on the control of discrete-time distributed parameter systems. SIAM J. Control Optim. 12 (1994), 721–735.
MR 0410506