Previous |  Up |  Next

Article

Keywords:
evolution family; uniform exponential instability; Banach function spaces
Summary:
In this paper we give necessary and sufficient conditions for uniform exponential instability of evolution families in Banach spaces, in terms of Banach function spaces. Versions of some well-known theorems due to Datko, Neerven, Rolewicz and Zabczyk, are obtained for the case of uniform exponential instability of evolution families.
References:
[1] Chow S. N., Leiva H.: Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach space. J. Differential Equations 120 (1995), 429–477. MR 1347351
[2] Chicone C., Latushkin Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surveys Monogr. 70, Amer. Math. Soc., 1999. MR 1707332 | Zbl 0970.47027
[3] Daleckii J. L., Krein M. G.: Stability of Solutions of Differential Equations in Banach Spaces. Transl. Math. Monogr. 43, Amer. Math. Soc., Providence, R.I., 1974. MR 0352639
[4] Datko R.: Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM J. Math. Anal. 3 (1972), 428–445. MR 0320465 | Zbl 0241.34071
[5] Meyer-Nieberg P.: Banach Lattices. Springer Verlag, Berlin, Heidelberg, New York, 1991. MR 1128093 | Zbl 0743.46015
[6] Megan M., Sasu B., Sasu A. L.: On uniform exponential stability of evolution families. Riv. Mat. Univ. Parma 4 (2001), 27–43. MR 1878009 | Zbl 1003.34045
[7] Megan M., Sasu A. L., Sasu B.: Nonuniform exponential instability of evolution operators in Banach spaces. Glas. Mat. Ser. III 56 (2001), 287–295. MR 1884449
[8] Megan M., Sasu B., Sasu A. L.: On nonuniform exponential dichotomy of evolution operators in Banach spaces. Integral Equations Operator Theory 44 (2002), 71–78. MR 1913424 | Zbl 1034.34056
[9] Megan M., Sasu A. L., Sasu B.: On uniform exponential stability of linear skew- -product semiflows in Banach spaces. Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143–154. MR 1905653 | Zbl 1032.34046
[10] Megan M., Sasu A. L., Sasu B.: Discrete admissibility and exponential dichotomy for evolution families. Discrete Contin. Dynam. Systems 9 (2003), 383–397. MR 1952381 | Zbl 1032.34048
[11] Megan M., Sasu A. L., Sasu B.: Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows. Bull. Belg. Mat. Soc. Simon Stevin 10 (2003), 1–21. MR 2032321 | Zbl 1045.34022
[12] Megan M., Sasu A. L., Sasu B.: Perron conditions for uniform exponential expansiveness of linear skew-product flows. Monatsh. Math. 138 (2003), 145–157. MR 1964462 | Zbl 1023.34043
[13] Megan M., Sasu B., Sasu A. L.: Exponential expansiveness and complete admissibility for evolution families. Czech. Math. J. 53 (2003). MR 2086730 | Zbl 1080.34546
[14] Megan M., Sasu A. L., Sasu B.: Perron conditions for pointwise and global exponential dichotomy of linear skew-product flows. accepted for publication in Integral Equations Operator Theory. MR 2105960 | Zbl 1064.34035
[15] Megan M., Sasu A. L., Sasu B.: Theorems of Perron type for uniform exponential stability of linear skew-product semiflows. accepted for publication in Dynam. Contin. Discrete Impuls. Systems. Zbl 1079.34047
[16] van Minh N., Räbiger F., Schnaubelt R.: Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line. Integral Equations Operator Theory 32 (1998), 332–353. MR 1652689 | Zbl 0977.34056
[17] van Neerven J. M. A. M.: Exponential stability of operators and operator semigroups. J. Funct. Anal. 130 (1995), 293–309. MR 1335382 | Zbl 0832.47034
[18] van Neerven J. M. A. M.: The Asymptotic Behaviour of Semigroups of Linear Operators. Operator Theory Adv. Appl. 88, Birkhäuser, Bassel, 1996. MR 1409370 | Zbl 0905.47001
[19] Rolewicz S.: On uniform N - equistability. J. Math. Anal. Appl. 115 (1986), 434–441. MR 0836237 | Zbl 0597.34064
[20] Zabczyk J.: Remarks on the control of discrete-time distributed parameter systems. SIAM J. Control Optim. 12 (1994), 721–735. MR 0410506
Partner of
EuDML logo