[1] Beg I.:
A characterization of random approximations. Int. J. Math. Math. Sci. 22 (1999), no. 1, 209–211.
MR 1684364 |
Zbl 0921.41014
[2] Beg I., Shahzad N.:
Random approximations and random fixed point theorems. J. Appl. Math. Stochastic Anal. 7 (1994), no. 2, 145–150.
MR 1281509 |
Zbl 0811.47069
[3] Bharucha-Reid A. T.:
Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), no. 5, 641–557.
MR 0413273 |
Zbl 0339.60061
[4] Itoh S.:
Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273.
MR 0528687 |
Zbl 0407.60069
[5] Lin T. C.:
Random approximations and random fixed point theorems for continuous 1-set contractive random maps. Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167–1176.
MR 1227521 |
Zbl 0834.47049
[6] O’Regan D.:
A fixed point theorem for condensing operators and applications to Hammerstein integral equations in Banach spaces. Comput. Math. Appl. 30(9) (1995), 39–49.
MR 1353517 |
Zbl 0846.45006
[7] Papageorgiou N. S.:
Fixed points and best approximations for measurable multifunctions with stochastic domain. Tamkang J. Math. 23 (1992), no. 3, 197–203.
MR 1195311 |
Zbl 0773.60057
[8] Rao G. S., Elumalai S.:
Approximation and strong approximation in locally convex spaces. Pure Appl. Math. Sci. XIX (1984), no. 1-2, 13–26.
MR 0748110 |
Zbl 0552.41025
[9] Rudin W.:
Functional Analysis, McGraw-Hill Book Company. New York, 1973.
MR 0365062
[10] Sehgal V. M., Singh S. P.:
On random approximations and a random fixed point theorem for set valued mappings. Proc. Amer. Math. Soc. 95 (1985), 91–94.
MR 0796453 |
Zbl 0607.47057
[11] Tan K. K., Yuan X. Z.:
Random fixed point theorems and approximations in cones. J. Math. Anal. Appl. 185 (1994), no. 2, 378–390.
MR 1283065
[12] Thaheem A. B.:
Existence of best approximations. Port. Math. 42 (1983-84), no. 4, 435–440.
MR 0836121
[13] Tukey J. W.:
Some notes on the separation axioms of convex sets. Port. Math. 3 (1942), 95–102.
MR 0006606