Previous |  Up |  Next

Article

Keywords:
locally convex space; measurable map; random approximation; characterization
Summary:
Some characterizations of random approximations are obtained in a locally convex space through duality theory.
References:
[1] Beg I.: A characterization of random approximations. Int. J. Math. Math. Sci. 22 (1999), no. 1, 209–211. MR 1684364 | Zbl 0921.41014
[2] Beg I., Shahzad N.: Random approximations and random fixed point theorems. J. Appl. Math. Stochastic Anal. 7 (1994), no. 2, 145–150. MR 1281509 | Zbl 0811.47069
[3] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), no. 5, 641–557. MR 0413273 | Zbl 0339.60061
[4] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273. MR 0528687 | Zbl 0407.60069
[5] Lin T. C.: Random approximations and random fixed point theorems for continuous 1-set contractive random maps. Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167–1176. MR 1227521 | Zbl 0834.47049
[6] O’Regan D.: A fixed point theorem for condensing operators and applications to Hammerstein integral equations in Banach spaces. Comput. Math. Appl. 30(9) (1995), 39–49. MR 1353517 | Zbl 0846.45006
[7] Papageorgiou N. S.: Fixed points and best approximations for measurable multifunctions with stochastic domain. Tamkang J. Math. 23 (1992), no. 3, 197–203. MR 1195311 | Zbl 0773.60057
[8] Rao G. S., Elumalai S.: Approximation and strong approximation in locally convex spaces. Pure Appl. Math. Sci. XIX (1984), no. 1-2, 13–26. MR 0748110 | Zbl 0552.41025
[9] Rudin W.: Functional Analysis, McGraw-Hill Book Company. New York, 1973. MR 0365062
[10] Sehgal V. M., Singh S. P.: On random approximations and a random fixed point theorem for set valued mappings. Proc. Amer. Math. Soc. 95 (1985), 91–94. MR 0796453 | Zbl 0607.47057
[11] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations in cones. J. Math. Anal. Appl. 185 (1994), no. 2, 378–390. MR 1283065
[12] Thaheem A. B.: Existence of best approximations. Port. Math. 42 (1983-84), no. 4, 435–440. MR 0836121
[13] Tukey J. W.: Some notes on the separation axioms of convex sets. Port. Math. 3 (1942), 95–102. MR 0006606
Partner of
EuDML logo