Previous |  Up |  Next

Article

Keywords:
natural affinor; natural bundle; natural transformation
Summary:
We prove that every natural affinor on $(J^r( \odot ^2 T^{\ast }))^{\ast }(M)$ is proportional to the identity affinor if dim$M\ge 3$.
References:
[1] Doupovec M., Kolář I.: Natural affinors on time-dependent Weil bundles. Arch. Math. (Brno) 27 (1991), 205-209. MR 1189217
[2] Doupovec M., Kurek J.: Torsions of connections of higher order cotangent bundles. Czech. Math. J. (to appear). MR 2018842
[3] Gancarzewicz J., Kolář I.: Natural affinors on the extended $r$-th order tangent bundles. Suppl. Rendiconti Circolo Mat. Palermo, 1993, 95-100. MR 1246623
[4] Kolář I., Modugno M.: Torsion of connections on some natural bundles. Diff. Geom. and Appl. 2(1992), 1-16. MR 1244453
[5] Kolář. I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin 1993. MR 1202431 | Zbl 0782.53013
[6] Kurek J.: Natural affinors on higher order cotangent bundles. Arch. Math. (Brno) 28 (1992), 175-180. MR 1222284
[7] Mikulski W. M.: The natural affinors on dual r-jet prolongation of bundles of 2-forms. Ann. UMCS Lublin 2002, (to appear). MR 1984608
[8] Mikulski W. M.: Natural affinors on $r$-jet prolongation of the tangant bundle. Arch. Math. (Brno) 34 (2) (1998). 321-328. MR 1645340
[9] Mikulski W. M.: The natural affinors on $ \otimes ^k T^{(k)}$. Note di Matematica vol. 19-n. 2. (1999), 269-274. MR 1816880
[10] Mikulski W. M.: The natural affinors on generalized higher order tangent bundles. Rend. Mat. Roma vol. 21. (2001). (to appear). MR 1884952 | Zbl 1048.58004
[11] Mikulski W. M.: Natural affinors on $(J^{r,s,q}(\cdot ,{\bold R}^{1,1})_0)^\ast $. Coment. Math. Carolinae 42 (2001), (to appear). MR 1883375 | Zbl 1050.58004
[12] Zajtz A.: On the order of natural operators and liftings. Ann. Polon. Math. 49 (1988), 169-178. MR 0983220
Partner of
EuDML logo