[1] Allegretto W., Huang Y. X.:
A Picone’s identity for the $p$-Laplacian and applications. Nonlin. Anal. 32 (1998), 819–830.
MR 1618334 |
Zbl 0930.35053
[2] Cecchi M., Došlá Z., Marini M.:
Principal solutions and minimal set for quasilinear differential equations. to appear in Dynam. Syst. Appl.
MR 2140874
[3] Došlý O., Elbert Á.:
Integral characterization of the principal solution of half-linear differential equations. Studia Sci. Math. Hungar. 36 (2000), No. 3-4, 455–469.
MR 1798750
[4] Došlý O., Lomtatidze A.:
Oscillation and nonoscillation criteria for half-linear second order differential equations. submitted.
Zbl 1123.34028
[5] Elbert Á.: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.
[6] Elbert Á.:
Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hungar. 19 (1984), 447–464.
MR 0874513 |
Zbl 0629.34066
[7] Elbert Á.:
The Wronskian and the half-linear differential equations. Studia Sci. Math. Hungar. 15 (1980), 101–105.
MR 0681431 |
Zbl 0522.34034
[8] Elbert Á., Kusano T.:
Principal solutions of nonoscillatory half-linear differential equations. Advances in Math. Sci. Appl. 18 (1998), 745–759.
MR 1657164
[9] Elbert Á., Schneider A.:
Perturbation of the half-linear Euler differential equations. Result. Math. 37 (2000), 56–83.
MR 1742294
[11] Jaroš J., Kusano T.:
A Picone type identity for half-linear differential equations. Acta Math. Univ. Comenianea 68 (1999), 137–151.
MR 1711081
[12] Leighton W., Morse M.:
Singular quadratic functionals. Trans. Amer. Math. Soc. 40 (1936) 252–286.
MR 1501873 |
Zbl 0015.02701
[13] Lorch L., Newman J. D.:
A supplement to the Sturm separation theorem, with applications. Amer. Math. Monthly 72 (1965), 359–366, 390.
MR 0176147 |
Zbl 0135.29702
[14] Mirzov J. D.:
On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–426.
MR 0402184 |
Zbl 0327.34027
[15] Mirzov J. D.:
Principal and nonprincipal solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117.
MR 1001343