[1] Ahmad S., Lazer A.:
Critical point theory and a theorem of Amaral and Pera. Bollettino U.M.I. 6 (1984), 583–598.
MR 0774464 |
Zbl 0603.34036
[2] Boccardo L., Drábek P., Giacchetti D., Kučera M.:
Generalization of Fredholm alternative for some nonlinear boundary value problem. Nonlinear Anal. T.M.A. 10 (1986), 1083–1103.
MR 0857742
[3] Dang H., Oppenheimer S. F.:
Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198 (1996), 35–48.
MR 1373525
[4] Del Pino M., Elgueta M., Manasevich R.:
A homotopic deformation along p of a Leray Schauder degree result and existence for $(| u^{\prime } |^{p-2}u^{\prime })^{\prime }+ f(t,u)=0, u(0)=u(T)=0, p>1^*$. J. Differential Equations 80 (1989), 1–13.
MR 1003248 |
Zbl 0708.34019
[5] Del Pino M., Manasevich R., Murua A.:
Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e. Nonlinear Anal. T.M.A. 18 (1992), 79–92.
MR 1138643 |
Zbl 0761.34032
[6] Drábek P.:
Solvability of boundary value problems with homogeneous ordinary differential operator. Rend. Istit. Mat. Univ. Trieste 8 (1986), 105–124.
MR 0928322
[7] Fabry C., Fayyad D.:
Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227.
MR 1310080 |
Zbl 0824.34026
[8] Fabry C., Mawhin J., Nkashama M. N.:
A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. London Math. Soc. 18 (1986), 173–180.
MR 0818822 |
Zbl 0586.34038
[9] Fonda A., Lupo D.:
Periodic solutions of second order ordinary differential differential equations. Bollettino U.M.I. 7 (1989), 291–299.
MR 1026756
[10] Gilbarg D., Trudinger N.:
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York (1977).
MR 0473443 |
Zbl 0361.35003
[11] Gossez J.-P., Omari P.: A note on periodic solutions for second order ordinary differential equation. Bollettino U.M.I. 7 (1991), 223–231.
[12] Guo Z.:
Boundary value problems of a class of quasilinear differential equations. Diff. Integral Equations 6 (1993), 705–719.
MR 1202567
[13] Hu S., Papageorgiou N. S.:
Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, The Netherlands (1997).
MR 1485775 |
Zbl 0887.47001
[14] Hu S., Papageorgiou N. S.:
Handbook of Multivalued Analysis, Volume II: Applications. Kluwer, Dordrecht, The Netherlands (2000).
MR 1741926 |
Zbl 0943.47037
[16] Manasevich R., Mawhin J.:
Periodic solutions for nonlinear systems with $p$-Laplacian like operators. J. Differential Equations 145 (1998), 367–393.
MR 1621038
[17] Mawhin J., Willem M.:
Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations. J. Differential Equations 2 (1984), 264–287.
MR 0741271 |
Zbl 0557.34036
[18] Zeidler E.:
Nonlinear Functional Analysis and its Applications II. Springer-Verlag, New York (1985).
MR 0768749