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EXISTENCE OF TWO SOLUTIONS FOR QUASILINEAR
PERIODIC DIFFERENTIAL EQUATIONS WITH

DISCONTINUITIES

NIKOLAOS S. PAPAGEORGIOU AND FRANCESCA PAPALINI

Abstract. In this paper we examine a quasilinear periodic problem driven
by the one- dimensional p-Laplacian and with discontinuous forcing term f .

By filling in the gaps at the discontinuity points of f we pass to a multivalued
periodic problem. For this second order nonlinear periodic differential inclu-

sion, using variational arguments, techniques from the theory of nonlinear
operators of monotone type and the method of upper and lower solutions,

we prove the existence of at least two non trivial solutions, one positive, the
other negative.

1. Introduction

The purpose of this paper is to study the following quasilinear periodic problem

−(|x′(t)|p−2x′(t))′ = f(t, x(t)) , a.e. on T = [0, b]
(1)

x(0) = x(b) , x′(0) = x′(b) , 2 ≤ p <∞ .

where f : T × R→ R is a function. We do not assume that the right hand side
function f(t, x) is continuous in the variable x ∈ R. So problem (1) need not
have a solution. In order to be able to develop a satisfactory existence theory, we
need to pass to a multivalued problem by, roughly speaking, filling in the gaps at
the discontinuity points of f(t, ·). More precisely, we introduce the following two
functions:

f1(t, x) = lim inf
x′→x

f(t, x′) and f2(t, x) = lim sup
x′→x

f(t, x′)

and then we define the multifunction f̂(t, x) = [f1(t, x), f2(t, x)]. Evidently, if
f(t, ·) is continuous at x, then f̂ (t, x) = {f(t, x)}. Instead of (1) we examine the
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following multivalued variant of it:

−(|x′(t)|p−2x′(t))′ ∈ f̂(t, x(t)) , a.e. on T = [0, b]
(2)

x(0) = x(b) , x′(0) = x′(b) , 2 ≤ p <∞ .

Our goal is to establish the existence of at least two nontrivial solutions for
problem (2). Earlier works on the periodic problem deal with semilinear equations
(i.e. p = 2) which have a continuous right hand side f and they prove the existence
of only one nontrivial solution. We refer to the papers of S. Ahmad-A. Lazer [1],
of A. Fonda-D. Lupo [9] and of J.-P. Gossez-P. Omari [11]. Multiplicity results
were proved by J. Mawhin-M. Willem [17] for the forced pendulum equation and
by C. Fabry-J. Mawhin-M. N. Nkashama [8], where f depends also in x′ but it is
continuous in all three variables. They prove an Ambrosetti-Prodi type theorem
for the equation they examine.

The quasilinear problem, driven by the one-dimensional p-Laplacian, was stud-
ied only recently. We refer to the works of L. Boccardo-P. Drábek-D. Giacchetti-M.
Kučera [2], H. Dang-S. F. Oppenheimer [3], M. Del Pino-M. Elgueta-R. Manase-
vich [4], P. Drábek [6], C. Fabry-D. Fayyad [7], Z. Guo [12] and R. Manasevich-J.
Mawhin [16]. Of the above papers L. Boccardo-P. Drábek-D. Giacchetti-M. Kučera
[2], M. Del Pino-M. Elgueta-R. Manasevich [4] and P. Drábek [6] deal with the
Dirichlet problem, R. Manasevich-J. Mawhin [16] study the periodic problem, Z.
Guo [12] studies both the periodic and the Neumann problems and finally H. Dang-
S. F. Oppenheimer [3] study all three problems (i.e. the Dirichelet, periodic and
Neumann problems). It should be mentioned that H. Dang-S. F. Oppenheimer
[3] and R. Manasevich-J. Mawhin [16] have a general p-Laplacian-like operator
which is not necessarily homogeneous and has no growth restrictions. Moreover,
R. Manasevich-J. Mawhin [16] consider systems. The multiplicity question for
quasilinear equations was addressed by M. Del Pino-R.Manasevich-A. Murua [5]
who assumed that f is continuous on both variables and used conditions on the
interaction of the vector field f with the Fuč́ık spectrum of the p-Laplacian differ-
ential operator.

In this paper we prove the existence of at least two nontrivial solutions for
problem (2). One solution is positive and the other is negative. Our approach
uses variational arguments, the theory of operators of monotone type and the
method of upper and lower solutions.

2. Mathematical preliminaries

Let X be a reflexive Banach space and X∗ its topological dual. A map A : D ⊂
X → 2X

∗
is said to be “monotone” if, for all x, y ∈ D and for all x∗ ∈ A(x), y∗ ∈

A(y), we have (x∗ − y∗, x− y) ≥ 0 (here by (·, ·) we denote the duality brackets
for the pair (X∗, X)). If (x∗ − y∗, x− y) = 0 implies that x = y, we say that A is
“strictly monotone ”. The map A is said to be “maximal monotone”, if the graph
of A, Gr A = {[x, x∗] ∈ X×X∗ : x∗ ∈ A(x)}, is maximal with respect to inclusion
among the graphs of the all monotone maps. It is easy to see that the graph of a
maximal monotone mapA is sequentially closed inX×X ∗w and inXw×X∗ (here by
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Xw and X∗w we denote the spaces X and X∗ furnished with their respective weak
topologies). A map A : X → X∗ which is single-valued and everywhere defined
(i.e. D = X) is said to be “demicontinuous”, if for any sequence {xn}n≥1 ⊂ X
such that xn → x in X it follows that Axn ⇀ Ax weakly in X∗. A monotone,
demicontinuous map is maximal monotone. A map A : D ⊂ X → 2X

∗
is said to

be “coercive”, if D is bounded or D is unbounded and inf [‖x∗‖:x∗∈A(x)]
‖x‖ → ∞ as

‖x‖ → ∞. A maximal monotone, coercive map is surjective.
A map A : D ⊂ X → 2X

∗
is said to be “pseudomonotone”, if

(a) for every x ∈ X, A(x) is nonempty, weakly compact and convex in X∗;

(b) A is upper semicontinuous as a multifunction from X into X∗w ; i.e. for every
C ⊂ X∗ nonempty and weakly closed, the set A−(C) = {x ∈ X : A(x)∩C 6=
∅} is closed;

(c) if {xn}n ⊂ X is a sequence such that xn ⇀ x weakly in X and if x∗n ∈
A(xn), n ≥ 1 is such that lim sup

n→∞
(x∗n, xn − x) ≤ 0 then, for every y ∈ X,

there exists x∗(y) ∈ A(x) such that (x∗(y), x− y) ≤ lim inf
n→∞

(x∗n, xn − y).

If a map A is bounded (i.e. it maps bounded sets into bounded sets) and satisfies
condition (c), then it satisfies also condition (b). A map A : X → 2X

∗
is said to be

“generalized pseudomonotone” if for every sequence {xn}n ⊂ X,xn ⇀ x weakly
in X and for every sequence {x∗n}n, x∗n ∈ A(xn), n ≥ 1 such that x∗n ⇀ x∗ weakly
in X∗ and lim sup

n→∞
(x∗n, xn − x) ≤ 0 then we have x∗ ∈ A(x) and (x∗n, xn)→ (x∗, x)

as n → ∞. Every maximal monotone operator is a generalized pseudomonotone
operator. Also a pseudomonotone operator is always generalized pseudomonotone.
The converse is true if the operator is also bounded. A pseudomonotone coercive
operator is surjective. For further details on these and related issues we refer to
the books of S. Hu-N. S. Papageorgiou [13] and E. Zeidler [18].

As we already mentioned earlier our approach also uses the method of upper
and lower solution. So let us define these two notions. We denote with Cper(T )
and C1

per(T ) respectively the sets Cper(T ) = {x ∈ C(T ) : x(0) = x(b)} and
C1

per(T ) = {x ∈ C1(T ) : x(0) = x(b), x′(0) = x′(b)}. A function ϕ ∈ Cper(T ) with
|ϕ′|p−2ϕ′ ∈ W 1,q(T )(1

p + 1
q = 1) is said to be an “upper solution” of problem (2)

if

−(|ϕ′(t)|p−2ϕ′(t))′ ≥ f2(t, ϕ(t)) , a.e. on T

ϕ(0) = ϕ(b) ;

while a function ψ ∈ Cper(T ) with |ψ′|p−2ψ′ ∈ W 1,q(T ) is said to be a “lower
solution” of problem (2) if

−(|ψ′(t)|p−2ψ′(t))′ ≤ f1(t, ψ(t)) , a.e. on T

ψ(0) = ψ(b) .

Finally by a solution of problem (2) we mean a function x ∈ C 1
per(T ) such that

|x′(·)|p−2x′(·) ∈ W 1,q(T ) and there exists g ∈ Lq(T ) with f1(t, x(t)) ≤ g(t) ≤
f2(t, x(t)) a.e. on T such that −(|x′(t)|p−2x′(t))′ = g(t) a.e. on T .
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3. Eigenvalues of the ordinary p-Laplacian

In this section we develop some basic facts about the spectrum of the one-
dimensional periodic p-Laplacian, i.e. of (−4p,W

1,p
per(T )) where4px = (|x′|p−2x′)′

and W 1,p
per(T ) = {x ∈ W 1,p(T ) : x(0) = x(b)}. In W 1,p

per(T ) we consider the norm
endowed by W1,p(T ). Note that W1,p(T ) (with (1 < p < ∞)) is embedded
continuously (in fact compactly) in C(T ) and so the evaluation at t = 0 and t = b
makes sense. We identify the part of the spectrum related to the well known
Poincaré-Wirtinger inequality (see Hu-Papageorgiou [14], p. 866 or Kesavan [15],
p. 88) which is crucial in the study of periodic problems. So our results are of
independent interest.

It is well-known that W 1,p
per(T ) = R

⊕
Vwhere V is the subspace of W 1,p

per(T )

defined by V = {x ∈ W1,p
per(T ) :

∫ b

0

x(t) dt = 0}. We introduce the following

quantity

λ̂1 = inf
[‖v′‖pp
‖v‖pp

: v ∈ V, v 6= 0
]
,

where ‖ · ‖p denotes the norm in the space Lp(T ).
We will show that λ̂1 is a nonzero eigenvalue of the periodic one-dimensional

p-Laplacian. In other words λ̂1 is a nonzero number for which the problem

−(|x′(t)|p−2x′(t))′ = λ|x(t)|p−2x(t) , a.e. on T
(3)

x(0) = x(b) , x′(0) = x′(b) ,

has a nontrivial solution. Note that λ0 = 0 is an eigenvalue for the nonlinear
problem (3). The corresponding to λ0 = 0 eigenspace is the one-dimensional
subspace of constant functions, i.e. R. Clearly problem (3) can not have a negative
eigenvalue.

Proposition 1. λ̂1 is positive.

Proof. Suppose that λ̂1 = 0. Then we can find a sequence {vn}n ⊂ V such that
‖vn‖p = 1, ∀n ∈ N and ‖v ′n‖p → 0 as n→∞. Hence the sequence {v′n}n converges
to 0 in Lp(T ) and so, using Poincaré-Wirtinger inequality (cf. [14], p. 866 or [15],
p. 88) we have that {vn}n converges to 0 in W1,p(T ) which is a contradiction with
the fact that ‖vn‖p = 1, ∀n ∈ N.

Proposition 2. There exists v ∈ V such that ‖v‖p = 1 and ‖v′‖pp = λ̂1.

Proof. Let {vn}n ⊂ V a sequence such that ‖vn‖p = 1, ∀n ∈ N and ‖v ′n‖pp → λ̂1

as n → ∞. So by virtue of the Poincaré-Wirtinger inequality (cf. [14], p. 866
or [15], p. 88) we have that {vn}n is bounded in W1,p

per(T ), hence by passing
to a subsequence if necessary we may assume that vn ⇀ v weakly in W 1,p

per(T ).
Since W1,p

per(T ) is embedded compactly in Lp(T ), we also have that there exists
a subsequence of {vn}n, denoted again by {vn}n, which converges to v in Lp(T ).
Therefore we obtain that ‖v‖p = 1. Now from the weak lower semicontinuity of
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the norm functional we have

‖v′‖pp ≤ lim inf
n→∞

‖v′n‖pp = λ̂1 ,

which implies, recalling the definition of λ̂1, that ‖v′‖pp = λ̂1.

Remark 1. By virtue of the strict convexity of the Lebesgue space Lp(T ), we see
that the element v ∈ Lp(T ), ‖v‖p = 1 obtained in Proposition 2 is unique.

Proposition 3. If v ∈ V, ‖v‖p = 1 is as in Proposition 2, then v ∈ C1
per(T ),

|v′|p−2v′ ∈W 1,q(T ) and v is a solution of the problem (3).

Proof. Let L : V → R be defined by

L(w) =
1
p
‖w′‖pp −

λ̂1

p
‖w‖pp , ∀w ∈ V .

From Proposition 2, we know that

0 = L(v) = inf
w∈V

L(w)

so we have that L′(v) = 0. But L′(w) = Â(w)− λ̂1J(w), ∀w ∈ V , where Â : V →
V ∗ and J : V → V ∗ are the operators defined by

((Â(w), u)) =
∫ b

0

|w′(t)|p−2w′(t)u′(t) dt , ∀w, u ∈ V ,

and
J(w) = |w(·)|p−2w(·) , ∀w ∈ V .

Here by ((·, ·)) we denote the duality brackets for the pair (V∗, V ). If by 〈·, ·〉 we
denote the duality brackets for the pair (W1,p

per(T )∗,W 1,p
per(T )) and A : W1,p

per(T ) →
W 1,p

per(T )∗ is the demicontinuous, nonlinear operator defined by

〈A(x), y〉 =
∫ b

0

|x′(t)|p−2x′(t)y′(t) dt , ∀x, y ∈ W 1,p
per(T ) ,

then because W1,p
per(T ) = V

⊕
R (i.e. V = W 1,p

per(T )/R), we see that A(x) = Â(x)
for all x ∈ V . Moreover we note that J(w) ∈ Lq(T ), ∀w ∈ V , therefore we obtain
A(v) = λ̂1J(v) ∈ Lq(T ). Then in particular for every η ∈ C∞0 (T ) = {η ∈ C∞(T ) :
η has compact support in (0, b)} we have

〈A(v), η〉 = λ̂1(J(v), η)q,p

(here by (·, ·)q,p we denote the duality brackets for the pair (Lq(T ), Lp(T ))) which
means that ∫ b

0

|v′(t)|p−2v′(t)η′(t) dt =
∫ b

0

λ̂1|v(t)|p−2v(t)η(t) dt .
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From Theorem 2.6.1, p. 89, of [15] we know that (|v ′|p−2v′)′ ∈ W−1,q(T ) =
W 1,p

0 (T )∗. So if by 〈·, ·〉0 we denote the duality brackets for the pair
(W 1,p

0 (T ),W−1,q(T )), we have

〈−(|v′|p−2v′)′, η〉0 = λ̂1(J(v), η)q,p .

Since η ∈ C∞0 (T ) was arbitrary and C∞0 (T ) is dense in W1,p
per(T ), we deduce that

−(|v′(t)|p−2v′(t))′ = λ̂1|v(t)|p−2v(t) a.e. on T ,
(4)

v(0) = v(b) .

From this it follows that |v′|p−2v′ ∈W 1,q(T ), hence |v′|p−2v′ ∈ C(T ).
Let now j : R→ R be the function defined by j(r) = |r| p−2r; it is simple to see

that j is strictly monotone, continuous and so j−1 exists and it is easily seen to
be continuous. Hence j−1(|v′(·)|p−2v′(·)) = v′(·) ∈ C(T ) and so v ∈ C1(T ).

Finally let η ∈ C∞per(T ) be such that η(0) = η(b) = 1. From Green’s formula we
have ∫ b

0

(|v′(t)|p−2v′(t))′η(t) dt = |v′(b)|p−2v′(b)η(b) − |v′(0)|p−2v′(0)η(0)

−
∫ b

0

|v′(t)|p−2v′(t)η′(t) dt ,

and so from (4) and from the fact that η(0) = η(b) = 1 we obtain

−λ̂1

∫ b

0

|v(t)|p−2v(t)η(t) dt = |v′(b)|p−2v′(b) − |v′(0)|p−2v′(0)

−
∫ b

0

|v′(t)|p−2v′(t)η′(t) dt .

Recalling the definitions of A(v) and J(v) and the fact that A(v) = λ̂1J(v) we
deduce that

−λ̂1(J(v), η)q,p = |v′(b)|p−2v′(b)− |v′(0)|p−2v′(0)− λ̂1(J(v), η)q,p ,

and so |v′(b)|p−2v′(b) = |v′(0)|p−2v′(0) from which using the action of j−1 we
conclude that v′(0) = v′(b).

Remark 2. In general λ̂1 > 0 is not the first nonzero eigenvalue of negative
ordinary scalar p-Laplacian with periodic boundary conditions. To identify that
eigenvalue we have to minimize not on the linear subspace V but on the cone

K = {x ∈ W 1,p
per(T ) :

∫ b

0

‖x(t)‖p−2x(t) dt = 0}. Of course if p = 2, then λ̂1 is

indeed the first nonzero eigenvalue and in fact λ̂1 =
(

2π
b

)p (we thank the referee
for bringing to our attention this issue).
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4. Existence of two solutions

Now we are ready to deal with problem (2). We introduce the following hy-
potheses for the discontinuous nonlinearity f(t, x):

H(f): f : T × R→ R is a function such that
(i) f1, f2 are both N-measurable functions (i.e. for every measurable function

x : T → R the functions t→ f i(t, x(t)), i = 1, 2, are measurable);
(ii) for every M > 0, there exists γM ∈ Lq(T )+ such that for almost all t ∈ T

and all x ∈ Rwith |x| ≤M we have

|f(t, x)| ≤ γM (t) ;

(iii) lim inf
x→+∞

f2(t, x) < 0 uniformly for almost all t ∈ T and lim sup
x→−∞

f1(t, x) > 0

uniformly for almost all t ∈ T ;

(iv) lim inf
|x|→0

f(t, x)
|x|p−2x

> λ̂1 uniformly for almost all t ∈ T .

By virtue of hypothesis H(f)(iii) we can find M,N > 1 such that for almost all
t ∈ T we have

(5) f2(t,M ) < 0 ,

and

(6) f1(t,−N ) > 0 .

Also from hypothesis H(f)(iv), we can find δ > 0, δ < 1 such that for almost all
t ∈ T we have

(7) f1(t, x) ≥ λ̂1|x|p−2x , ∀x ∈ (0, δ)

while

(8) f2(t, x) ≤ λ̂1|x|p−2x , ∀x ∈ (−δ, 0) .

Let v ∈ C1(T ) be as in Proposition 3 and set u(t) = |v(t)|, t ∈ T . Then we know
that u ∈ W 1,p

per(T ) (cf. [10], p.146 or [14], p. 866). So u is absolutely continuous
and

u′(t) =


v′(t) , for a.a. t ∈ {t ∈ T : v(t) > 0} ,
0 , for a.a. t ∈ {t ∈ T : v(t) = 0} ,
−v′(t) , for a.a. t ∈ {t ∈ T : v(t) < 0} .

Evidently we can find ξ > 0 such that 0 ≤ ξu(t) < δ for all t ∈ T . Set v1 = ξu.
Then v1 ∈ W 1,p

per(T ), v1 6= 0, v1(t) ≥ 0, ∀t ∈ T and by virtue of Proposition 3 and
(7) we have

−(|v′1(t)|p−2v′1(t))′ = − ξp−1(|u′(t)|p−2u′(t))′

= ξp−1λ̂1|u(t)|p−2u(t)

= λ̂1|v1(t)|p−2v1(t) ≤ f1(t, v1(t)) , a.e. on T ,
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which means that v1 is a lower solution of problem (2). Now, if we put ϕ(t) =
M, t ∈ T , from (5) we have that f2(t,M ) ≤ 0 = −(|ϕ′(t)|p−2ϕ′(t))′ for almost all
t ∈ T . So ϕ is an upper solution of problem (2). Moreover note that 0 ≤ v1(t) <
ϕ(t), ∀t ∈ T , and as in Proposition 3 we deduce that v1 ∈ C1

per(T ).
In the same way, using Proposition 3, (6) and (8), we can find v2, ψ ∈ C1

per(T )
which are respectively an upper and a lower solution of problem (2); moreover
ψ(t) < v2(t) ≤ 0, ∀t ∈ T and v2 6= 0.

Now we are ready to prove the following

Theorem 4. If hypotheses H(f) hold, then problem (2) has a nontrivial solution
x ∈ C1(T ) such that 0 ≤ v1(t) ≤ x(t) ≤ ϕ(t), ∀t ∈ T .

Proof. Our proof uses truncation and penalization techniques together with re-
sults from the theory of operators of monotone type.

We introduce the truncation map τ : W1,p(T )→W 1,p(T ) defined by

τ (x)(t) =


M , M ≤ x(t) ,

x(t) , v1(t) ≤ x(t) ≤M ,

v1(t) , x(t) ≤ v1(t) .

It is easy to see that τ is continuous. Also we introduce the penalty function
β : T × R→ R defined by

β(t, x) =


(x−M )p−1 , M ≤ x ,

0 , v1(t) ≤ x ≤M ,

−(v1(t) − x)p−1 , x ≤ v1(t) .

Clearly β is a Carathéodory function and there exist a1 ∈ Lq(T )+ and c1 > 0 such
that

(9) |β(t, x)| ≤ a1(t) + c1|x|p−1 , a.e. on T and for all x ∈ R.

Moreover, it is easy to verify that it is possible to find c2, c3, c4 > 0 such that

(10)
∫ b

0

β(t, x(t))x(t) dt ≥ c2‖x‖pp − c3‖x‖1 − c4 , for all x ∈ Lp(T ) .

We introduce the following auxiliary problem

−(|x′(t)|p−2x′(t))′ ∈ f̂ (t, τ (x)(t))− β(t, x(t)) , a.e. on T
(11)

x(0) = x(b) , x′(0) = x′(b)

Let A : W 1,p
per(T )→W 1,p

per(T )∗ be the operator defined, as in Proposition 3, by

〈A(w), u〉 =
∫ b

0

|w′(t)|p−2w′(t)u′(t) dt , ∀w, u ∈ W 1,p
per(T ) .

It is easy to see that, A is bounded, monotone, demicontinuous and so maximal
monotone. Also let B : Lp(T ) → Lq(T ) be the Nemitsky operator corresponding
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to the penalty function β: for all x ∈ Lp(T ), we have

B(x)(t) = β(t, x(t)) , t ∈ T .

It is well-known that B is continuous (cf. [13], Theorem 7.26, p. 237) and, from
(9) we obtain that B is bounded, while, directly from the definition of β it follows
that B is monotone. Finally let F : W 1,p(T )→ 2L

q(T ) defined by

F (x) = {g ∈ Lq(T ) : g(t) ∈ f̂(t, τ (x)(t)) , a.e. on T}, for all x ∈W 1,p(T ) .

An easy application of the Yankov-von Neumann-Aumann selection theorem (cf.
[13], p. 158) reveals that for every x ∈ W 1,p(T ), F (x) is nonempty, weakly compact
and convex in Lq(T ), while by virtue of hypothesis H(f)(ii) and the definition of
truncation map we have that F is bounded.

Let R : W 1,p
per(T ) → 2W

1,p
per (T )∗ be the multivalued operator defined by R =

A+ B − F .

Claim 1: R is pseudomonotone.
Since R is bounded and with nonempty convex and closed values it is sufficient

to prove (cf. [13], Proposition 6.11, p. 366) that R is generalized pseudomonotone.
Therefore let (xn)n ∈ W 1,p

per(T ) be a sequence such that xn ⇀ x weakly in W 1,p
per(T )

and let (un)n ∈ W 1,p
per(T )∗ be a sequence such that un ⇀ u weakly in W 1,p

per(T )∗,
un ∈ R(xn), ∀n ∈ N and suppose that lim sup

n→∞
〈un, xn − x〉 ≤ 0. Moreover let

wn ∈ F (xn), be such that un = A(xn) + B(xn)− wn, n ∈ N; therefore we have

〈un, xn − x〉 = 〈A(xn), xn − x〉+ (B(xn), xn − x)q,p − (wn, xn − x)q,p .

Recall that W 1,p
per(T ) is embedded compactly in Lp(T ), so, by passing to a subse-

quence if necessary, we have that xn → x in Lp(T ) from which, recalling that B
and F are bounded we deduce that (B(xn), xn−x)q,p → 0 and (wn, xn−x)q,p → 0.
Therefore

lim sup
n→∞

〈A(xn), xn − x〉 ≤ 0 .

But A being maximal monotone is generalized pseudomonotone. So we have
A(xn) ⇀ A(x) weakly in W 1,p

per(T )∗ and 〈A(xn), xn〉 → 〈A(x), x〉 as n → ∞;
which implies that ‖x′n‖p → ‖x′‖p thus, since Lp(T ) is a uniformly convex space,
we deduce that

xn→ x in W 1,p
per(T ) as n→∞ .

Therefore we obtain that B(xn) → B(x) in Lq(T ) and, for at least a subse-
quence, we have wn ⇀ w weakly in Lq(T ) and by virtue of Proposition VII. 3.9
p. 694 of [13] we have that w ∈ F (x). So un ⇀ u = A(x) + B(x) − w weakly in
W 1,p

per(T )∗ which means that u ∈ R(x) and 〈un, xn〉 → 〈u, x〉 as n → ∞. So R is
generalized pseudomonotone and therefore it is pseudomonotone.

Claim 2: R is coercive.
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Fixed x ∈W 1,p
per(T ) and u ∈ R(x), let w ∈ F (x) such that u = A(x) +B(x)−w.

So, taking into account (10) we have

〈u, x〉 = 〈A(x), x〉+ (B(x), x)q,p − (w, x)q,p
≥ 〈A(x), x〉+ (B(x), x)q,p − ‖w‖q‖x‖p
≥ ‖x′‖pp + c2‖x‖pp − c3‖x‖1 − c4 − ‖w‖q‖x‖p
≥ ‖x′‖pp + c2‖x‖pp − c3‖x‖1 − c4 −

‖w‖qq
qεq/p

− ε‖x‖pp
p .

Observe now that the set F (W1,p
per(T )) is bounded in Lq(T ) and W1,p

per(T ) is em-
bedded in L1(T ) so there exist k1, k2 > 0 such that

〈u, x〉 ≥ ‖x′‖pp + c2‖x‖pp − k1‖x‖1,p − c4 −
k2

qεq/p
−
ε‖x‖pp
p

.

Let ε > 0 be such that pc2 − ε > 0 then we can find k3, k4 > 0 with the property

〈u, x〉 ≥ k3‖x‖p1,p − k1‖x‖1,p − k4 ,

from which we deduce the coercivity of R.
From Corollary 6.30 of [13], we have that R is surjective; so we can find x ∈

W 1,p
per(T ) such that 0 ∈ R(x). Arguing as in the proof of Proposition 3 we obtain

that x is a solution of problem (11), |x′|p−2x′ ∈W 1,q(T ) and x ∈ C1
per(T ).

Claim 3: For all t ∈ T we have 0 ≤ v1(t) ≤ x(t) ≤ ϕ(t) .
We recall that v1 ∈ C1

per(T ) and

(12) −(|v′1(t)|p−2v′1(t))′ ≤ f1(t, v1(t)) a.e. on T .

Also x is a solution of problem (11) so it follows that there exists w ∈ Lq(T ) such
that w(t) ∈ f̂(t, τ (x)(t)), a.e. on T and

−(|x′(t)|p−2x′(t))′ = w(t)− β(t, x(t)) , a.e. on T .

Subtract from (12) the previous equality and multiply with (v1−x)+(t); we obtain

[(|x′(t)|p−2x′(t))′ − (|v′1(t)|p−2v′1(t))′](v1 − x)+(t)

≤f1[(t, v1(t)) − w(t) + β(t, x(t))](v1 − x)+(t) , a.e. on T .

Now integrating over T and using Green’s formula (note that (v1−x)+ ∈W 1,p
per(T ),

see [10], p. 145) we have∫ b

0

(|v′1(t)|p−2v′1(t) − |x′(t)|p−2x′(t))(v1 − x)′+(t) dt

(13) ≤
∫ b

0

[f1(t, v1(t)) − w(t) + β(t, x(t))](v1 − x)+(t) dt .

We know that (cf. [10])

(v1 − x)′+(t) =

{
(v1 − x)′(t) , if x(t) < v1(t)

0 , if x(t) ≥ v1(t) .



TWO PERIODIC SOLUTIONS 295

So we have∫ b

0

(|v′1(t)|p−2v′1(t) − |x′(t)|p−2x′(t))(v1 − x)′+(t) dt

(14)
=
∫
A

(|v′1(t)|p−2v′1(t) − |x′(t)|p−2x′(t))(v′1(t)− x′(t)) dt ≥ 0 ,

where A = {t ∈ T : v1(t) ≥ x(t)}. Also we have∫ b

0

[f1(t, v1(t)) − w(t)](v1 − x)+(t) dt

(15) =
∫
A

[f1(t, v1(t)) − w(t)](v1(t)− x(t)) dt ≤ 0 ,

because on A, f̂(t, τ (x)(t)) = f̂(t, v1(t)) and so w(t) ≥ f1(t, v1(t)).
Using (14) and (15) in (13) we obtain

0 ≤
∫ b

0

β(t, x(t))(v1 − x)+(t) dt =
∫
A

−(v1(t) − x(t))p−1(v1(t)− x(t)) dt ,

which implies that ∫ b

0

(v1 − x)p+(t) dt = 0

and so v1(t) ≤ x(t) for all t ∈ T .
Similarly we can show that x(t) ≤ ϕ(t) = M for all t ∈ T . Hence 0 ≤ v1(t) ≤

x(t) ≤ ϕ(t) for all t ∈ T , which implies that τ (x) = x and β(t, x(t)) = 0. Therefore
x is a solution of problem (2).

In the same way we obtain the following

Theorem 5. If hypotheses H(f) hold, then problem (2) has a nontrivial solution
x ∈ C1(T ) such that ψ(t) ≤ x(t) ≤ v2(t) ≤ 0, ∀ t ∈ T .

Putting together Theorems 4 and 5, we have the following multiplicity result

Theorem 6. If hypotheses H(f) hold, then problem (2) has at least two nontrivial
solutions in C1(T ): one positive and the second negative.
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