Previous |  Up |  Next

Article

Keywords:
prime rings; $(\sigma, \tau )$-derivations; torsion free rings and commutativity
Summary:
Let $R$ be a 2-torsion free prime ring and let $\sigma , \tau $ be automorphisms of $R$. For any $x, y \in R$, set $[x , y]_{\sigma , \tau } = x\sigma (y) - \tau (y)x$. Suppose that $d$ is a $(\sigma , \tau )$-derivation defined on $R$. In the present paper it is shown that $(i)$ if $R$ satisfies $[d(x) , x]_{\sigma , \tau } = 0$, then either $d = 0$ or $R$ is commutative $(ii)$ if $I$ is a nonzero ideal of $R$ such that $[d(x) , d(y)] = 0$, for all $x, y \in I$, and $d$ commutes with both $\sigma $ and $\tau $, then either $d = 0$ or $R$ is commutative. $(iii)$ if $I$ is a nonzero ideal of $R$ such that $d(xy) = d(yx)$, for all $x, y \in I$, and $d$ commutes with $\tau $, then $R$ is commutative. Finally a related result has been obtain for $(\sigma , \tau )$-derivation.
References:
[1] Aydin N., Kaya A.: Some generalization in prime rings with $(\sigma , \tau )$-derivation. Doga Turk. J. Math. 16 (1992), 169–176. MR 1202970
[2] Bell H. E., Martindale W. S.: Centralizing mappings of semiprime rings. Canad. Math. Bull. 30 (1987), 92–101. MR 0879877 | Zbl 0614.16026
[3] Bell H. E., Kappe L. C.: Ring in which derivations satisfy certain algebric conditions. Acta Math. Hungar. 53 (1989), 339–346. MR 1014917
[4] Bell H. E., Daif M. N.: On commutativity and strong commutativity preserving maps. Canad. Math. Bull. 37 (1994), 443–447. MR 1303669 | Zbl 0820.16031
[5] Bell H. E., Daif M. N.: On derivations and commutativity in prime rings. Acta Math. Hungar. 66 (1995), 337–343. MR 1314011 | Zbl 0822.16033
[6] Bresar M.: On a generalization of the notion of centralizing mappings. Proc. Amer. Math. Soc. 114 (1992), 641–649. MR 1072330 | Zbl 0754.16020
[7] Bresar M.: Centralizing mappings and derivations in prime rings. J. Algebra 156 (1993), 385–394. MR 1216475 | Zbl 0773.16017
[8] Daif M. N., Bell H. E.: Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 15 (1992), 205–206. MR 1143947 | Zbl 0746.16029
[9] Herstein I. N.: A note on derivations. Canad. Math. Bull. 21 (1978), 369–370. MR 0506447 | Zbl 0412.16018
[10] Herstein I. N.: Rings with involution. Univ. Chicago Press, Chicago 1976. MR 0442017 | Zbl 0343.16011
[11] Posner E. C.: Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100. MR 0095863
[12] Vukman J.: Commuting and centralizing mappings in prime rings. Proc. Amer. Math. Soc. 109 (1990), 47–52. MR 1007517 | Zbl 0697.16035
[13] Vukman J.: Derivations on semiprime rings. Bull. Austral. Math. Soc. 53 (1995), 353–359. MR 1388583
Partner of
EuDML logo