Article
Keywords:
prime rings; $(\sigma, \tau )$-derivations; torsion free rings and commutativity
Summary:
Let $R$ be a 2-torsion free prime ring and let $\sigma , \tau $ be automorphisms of $R$. For any $x, y \in R$, set $[x , y]_{\sigma , \tau } = x\sigma (y) - \tau (y)x$. Suppose that $d$ is a $(\sigma , \tau )$-derivation defined on $R$. In the present paper it is shown that $(i)$ if $R$ satisfies $[d(x) , x]_{\sigma , \tau } = 0$, then either $d = 0$ or $R$ is commutative $(ii)$ if $I$ is a nonzero ideal of $R$ such that $[d(x) , d(y)] = 0$, for all $x, y \in I$, and $d$ commutes with both $\sigma $ and $\tau $, then either $d = 0$ or $R$ is commutative. $(iii)$ if $I$ is a nonzero ideal of $R$ such that $d(xy) = d(yx)$, for all $x, y \in I$, and $d$ commutes with $\tau $, then $R$ is commutative. Finally a related result has been obtain for $(\sigma , \tau )$-derivation.
References:
[1] Aydin N., Kaya A.:
Some generalization in prime rings with $(\sigma , \tau )$-derivation. Doga Turk. J. Math. 16 (1992), 169–176.
MR 1202970
[2] Bell H. E., Martindale W. S.:
Centralizing mappings of semiprime rings. Canad. Math. Bull. 30 (1987), 92–101.
MR 0879877 |
Zbl 0614.16026
[3] Bell H. E., Kappe L. C.:
Ring in which derivations satisfy certain algebric conditions. Acta Math. Hungar. 53 (1989), 339–346.
MR 1014917
[4] Bell H. E., Daif M. N.:
On commutativity and strong commutativity preserving maps. Canad. Math. Bull. 37 (1994), 443–447.
MR 1303669 |
Zbl 0820.16031
[5] Bell H. E., Daif M. N.:
On derivations and commutativity in prime rings. Acta Math. Hungar. 66 (1995), 337–343.
MR 1314011 |
Zbl 0822.16033
[6] Bresar M.:
On a generalization of the notion of centralizing mappings. Proc. Amer. Math. Soc. 114 (1992), 641–649.
MR 1072330 |
Zbl 0754.16020
[7] Bresar M.:
Centralizing mappings and derivations in prime rings. J. Algebra 156 (1993), 385–394.
MR 1216475 |
Zbl 0773.16017
[8] Daif M. N., Bell H. E.:
Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 15 (1992), 205–206.
MR 1143947 |
Zbl 0746.16029
[11] Posner E. C.:
Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
MR 0095863
[12] Vukman J.:
Commuting and centralizing mappings in prime rings. Proc. Amer. Math. Soc. 109 (1990), 47–52.
MR 1007517 |
Zbl 0697.16035
[13] Vukman J.:
Derivations on semiprime rings. Bull. Austral. Math. Soc. 53 (1995), 353–359.
MR 1388583