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ON (σ, τ )-DERIVATIONS IN PRIME RINGS

MOHAMMAD ASHRAF AND NADEEM-UR-REHMAN

Abstract. Let R be a 2-torsion free prime ring and let σ, τ be automor-
phisms of R. For any x, y ∈ R, set [x, y]σ,τ = xσ(y) − τ(y)x. Suppose that

d is a (σ, τ)-derivation defined on R. In the present paper it is shown that
(i) if R satisfies [d(x), x]σ,τ = 0, then either d = 0 or R is commutative (ii)

if I is a nonzero ideal of R such that [d(x), d(y)] = 0, for all x, y ∈ I , and d
commutes with both σ and τ , then either d = 0 or R is commutative. (iii)

if I is a nonzero ideal of R such that d(xy) = d(yx), for all x, y ∈ I , and d
commutes with τ , then R is commutative. Finally a related result has been

obtain for (σ, τ)-derivation.

1. Introduction

Throughout the present paper R will denote an associative ring with center
Z(R). For any x, y ∈ R the symbol [x, y] represents commutator xy − yx and
for a non-empty subset S of R, we put CR(S) = {x ∈ R | [x, s] = 0, for all
s ∈ S}. The set of all commutators of elements of S will be written as [S, S].
Recall that R is prime if aRb = (0) implies that a = 0 or b = 0. Let σ and τ be
any two automorphisms of R. For any a, b ∈ R we set [a, b]σ,τ = aσ(b) − τ (b)a.
An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y),
for all x, y ∈ R. An additive mapping d : R → R is called a (σ, τ )-derivation if
d(xy) = d(x)σ(y) + τ (x)d(y) holds for all x, y ∈ R. Of course a (1, 1)-derivation
where 1 is the identity map on R is a derivation. A mapping F : R → R is said
to be centralizing if [F (x), x] ∈ Z(R), for all x ∈ R, in the special case when
[F (x), x] = 0, the mapping F is said to be commuting on R. Mapping F : R→ R
is said to be (σ, τ )-centralizing (resp. (σ, τ )-commuting) if [F (x), x]σ,τ ∈ Z(R)
(resp. [F (x), x]σ,τ = 0) holds for all x ∈ R. Of course a (1, 1)-centralizing (resp.
(1, 1)-commuting) mapping is a centralizing (resp. commuting) on R. There are
several results in the existing literature dealing with centralizing and commuting
mappings in rings. The study of centralizing mappings was initiated by Posner
[11] which states that the existence of a nonzero centralizing derivation on a prime
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ring forces the ring to be commutative (Posner’s second theorem). In an attempt
to generalize the above result Vukman [12] proved that if R is a 2-torsion free
prime ring and d : R → R a nonzero derivation such that the map x 7→ [d(x), x]
is commuting on R, then R is commutative. In the present paper it is shown that
the conclusion of the above theorem holds if for a (σ, τ )-derivation d the mapping
x 7→ d(x) is (σ, τ )-commuting. In fact we have proved the following.

Theorem 1. Let R be a 2-torsion free prime ring. Suppose there exists a (σ, τ )-
derivation d : R → R such that [d(x), x]σ,τ = 0, for all x ∈ R. Then either d = 0
or R is commutative.

A famous result due to Herstein [9] states that if R is prime ring of characteristic
not 2 which admits a nonzero derivation d such that [d(x), d(y)] = 0, for all
x, y ∈ R, then R is commutative. Motivated by this result, recently Bell and Daif
[5] studied derivation d satisfying d(xy) = d(yx), for all x, y ∈ R. Now our object
is to generalize these two results for (σ, τ )-derivations as follows:

Theorem 2. Let R be a 2-torsion free prime ring, and I a nonzero ideal of R.
If R admits a (σ, τ )-derivation d such that [d(x), d(y)] = 0, for all x, y ∈ I and d
commutes with both σ, τ , then either d = 0 or R is commutative.

Theorem 3. Let R be a 2-torsion free prime ring, and I a nonzero ideal of R. If
R admits a nonzero (σ, τ )-derivation d such that d(xy) = d(yx), for all x, y ∈ I
and d commutes with τ , then R is commutative.

2. Proof of the Main Results

Throughout the present paper, we shall make extensive use of the following
basic commutator identities:

[xy, z]σ,τ = x[y, z]σ,τ + [x, τ (z)]y = x[y, σ(z)] + [x, z]σ,τy

and

[x, yz]σ,τ = τ (y)[x, z]σ,τ + [x, y]σ,τσ(z) .

To facilitate our discussion, we begin with the following lemmas.

Lemma 2.1 ([1, Lemma 3]). Let R be a prime ring, I a nonzero ideal of R and
a ∈ R. If R admits a (σ, τ )-derivation d such that ad(I) = (0) (or d(I)a = (0)),
then either d = 0 or a = 0.

Lemma 2.2. Let R be a 2-torsion free prime ring, I be a nonzero ideal of R. If R
admits a (σ, τ )-derivation d such that d2(I) = (0) and d commutes with both σ, τ ,
then d = 0.

Proof. For any x ∈ I, we have d2(x) = 0. Replacing x by xy, we get d2(x)σ2(y)+
τ (d(x))d(σ(y)) + d(τ (x))σ(d(y)) + τ2(x)d2(y) = 0, for all x, y ∈ I and hence using
the fact that d2(I) = (0) and d commutes with both σ, τ , the above relation yields
that τ (d(x))σ(d(y)) = 0, for all x, y ∈ I i.e. σ−1(τ (d(x)))d(y) = 0, for all x, y ∈ I.
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Thus application of Lemma 2.1 gives that either d = 0 or σ−1(τ (d(x))) = 0. If
σ−1(τ (d(x))) = 0, for all x ∈ I, then d(x) = 0, for all x ∈ I. For any r ∈ R, replace
x by xr, to get d(x)σ(r) + τ (x)d(r) = 0, for all x ∈ I and hence xτ−1(d(r)) = 0,
for all x ∈ I, r ∈ R i.e. IRτ −1(d(r)) = (0). Since I is a nonzero ideal of R and
R is prime the above relation yields that τ−1(d(r)) = 0, for all r ∈ R and hence
d = 0.

Proof of Theorem 1. Let us introduce a mapping B(·, ·) : R × R → R by the
relation B(x, y) = [d(x), y]σ,τ + [y, d(x)]σ,τ , for all x, y ∈ R. Obviously B(·, ·) is
symmetric (that is B(x, y) = B(y, x), for all x, y ∈ R) and additive in both the
arguments. Notice that

B(xy, z) = [d(xy), z]σ,τ + [d(z), xy]σ,τ
= B(x, z)σ(y) + τ (x)B(y, z) + d(x)σ([y, z]) + τ ([x, z])d(y) ,

(1)

for all x, y, z ∈ R.
Now, introduce a mapping f from R into itself by f(x) = B(x, x), for all x ∈ R.

We have f(x) = 2[d(x), x]σ,τ for all x ∈ R. The mapping f satisfies the relation

f(x + y) = 2[d(x+ y), x + y]σ,τ
= 2[d(x), x]σ,τ + 2[d(y), x]σ,τ + 2[d(x), y]σ,τ + 2[d(y), y]σ,τ
= f(x) + f(y) + 2B(x, y) ,

(2)

for all x, y ∈ R.
Throughout the proof we shall use the mappingsB and f , as well as the relation

(1) and (2) without specific references. The assumption of the theorem can be
rewritten as

(3) f(x) = 0 , for all x ∈ R .
Linearization of (3) gives that f(x) + f(y) + 2B(x, y) = 0, for all x, y ∈ R and
hence 2B(x, y) = 0, for all x, y ∈ R. Since char R 6= 2, we get B(x, y) = 0, for all
x, y ∈ R. Replacing y by xy in the above relation, we obtain

B(x, xy) = f(x)σ(x) + τ (x)B(x, y) + d(x)σ([x, y]) = 0 ,

for all x, y ∈ R and hence using (3) and the fact that B(x, y) = 0, we get

d(x)σ([x, y]) = 0 , for all x, y ∈ R ,
i.e. σ−1(d(x))[x, y] = 0, for all x, y ∈ R. Again replace y by yz in the above expres-
sion, to get σ−1(d(x))y[x, z] = 0, for all x, y, z ∈ R and hence σ−1(d(x))R[x, z] = 0,
for all x, z ∈ R. Thus for each x ∈ R, either σ−1(d(x)) = 0 or [x, z] = 0, for all
z ∈ R. This shows that additive group R is the union of two of its additive sub-
groups A = {x ∈ R | σ−1(d(x)) = 0} and B = {x ∈ R | [x, z] = 0, for all z ∈ R}.
This implies that either R = A or R = B. If R = A, then σ−1(d(x)) = 0, for all
x ∈ R, i.e. d = 0. On the other hand if R = B, then [x, z] = 0, for all x, z ∈ R,
i.e. R is commutative. This completes the proof of the theorem.

Proof of Theorem 2. We have

(4) [d(x), d(y)] = 0 , for all x, y ∈ I .



262 M. ASHRAF AND NADEEM-UR-REHMAN

Replacing y by xy in (4) and using (4), we get

d(x)[d(x), σ(y)] + [d(x), τ (x)]d(y) = 0 , for all x, y ∈ I .
Now for any r ∈ R, replace y by yr in the above expression to get

(5) d(x)σ(y)[d(x), σ(r)] + [d(x), τ (x)]τ (y)d(r) = 0 ,

for all x, y ∈ I, r ∈ R. In view of (4) for r = σ−1(d(z)), for any z ∈ I (5) reduces
to

[d(x), τ (x)]τ (y)σ−1(d2(z)) = 0 , for all x, y, z ∈ I .
For any s ∈ R, replacing y by yτ−1(s) in the above relation we get

[d(x), τ (x)]τ (y)Rσ−1(d2(z)) = (0) ,

for all x, y, z ∈ I, s ∈ R. This implies that either σ−1(d2(z)) = 0 or [d(x), τ (x)]
·τ (y) = 0, for all x, y ∈ I. If σ−1(d2(z)) = 0, for all z ∈ I, then d2(z) = 0 for all
z ∈ I and hence by Lemma 2.2 we get the required result. On the other hand if
[d(x), τ (x)]τ (y) = 0, for all x, y ∈ I, then τ−1([d(x), τ (x)])y = 0, for all x, y ∈ I
and hence τ−1([d(x), τ (x)])RI = (0), for all x ∈ I. Since I is a nonzero ideal of R
and R is prime the above relation yields that τ−1([d(x), τ (x)]) = 0, for all x ∈ I
and hence

(6) [d(x), τ (x)] = 0 , for all x ∈ I .
Linearizing (6), we get

(7) [d(x), τ (y)] + [d(y), τ (x)] = 0 for all x, y ∈ I .
Now replacing y by yx in (7) and using (7), we get d(x)[σ(y), τ (x)] = 0, for all

x, y ∈ I. For any r1 ∈ R, again replace y by yσ−1(r1), to get d(x)σ(y)[r1, τ (x)] = 0,
for all x, y ∈ I, r1 ∈ R and hence σ−1(d(x))yσ−1([r1, τ (x)]) = 0 i.e. σ−1(d(x))
· IRσ−1([r1, τ (x)]) = (0). The primeness of R implies that for each x ∈ I either
σ−1(d(x))I = (0) or σ−1([r1, τ (x)]) = 0. If σ−1(d(x))I = (0), then σ−1(d(x))RI =
(0). Since I is a nonzero ideal of R and R is prime the above relation yields
that σ−1(d(x)) = 0 and hence d(x) = 0. Thus for each x ∈ I, either d(x) = 0 or
[r1, τ (x)] = 0, for all r1 ∈ R. Now let A = {x ∈ I | d(x) = 0},
B = {x ∈ I | [r1, τ (x)] = 0, for all r1 ∈ R}. Then A and B are additive
subgroups of I and I = A ∪B. But a group can not be a union of two its proper
subgroups and hence I = A or I = B. If I = A, then d(x) = 0, for all x ∈ I.
For any s1 ∈ R, replace x by xs1, to get τ (x)d(s1) = 0, for all x ∈ I and hence
IRτ−1(d(s1)) = (0). Again primeness of R implies that τ−1(d(s1)) = 0, for all
s1 ∈ R, and hence d = 0. On the other hand if I = B, then that τ (x) ∈ Z(R), for
all x ∈ I and hence x ∈ Z(R), for all x ∈ I i.e. I ⊆ Z(R). But if R is prime which
has a nonzero central ideal, then R is commutative.

Proof of Theorem 3. Let c ∈ I be a constant i.e. an element such that d(c) = 0
and let z be an arbitrary element of I. The condition that d(cz) = d(zc) yields
that τ (c)d(z) = d(z)σ(c). Now for each x, y ∈ I, [x, y] is a constant and hence

(8) τ ([x, y])d(z) = d(z)σ([x, y]) , for all x, y, z ∈ I .
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We have d(xy) = d(yx), for all x, y ∈ I. This can be rewritten as

(9) [d(x), y]σ,τ = [d(y), x]σ,τ , for all x, y ∈ I .

Replacing x by x2 in (9) and using (9), we get

(10) d(x)σ([x, y]) + τ ([x, y])d(x) = 0 , for all x, y ∈ I .

In view of (8) the above yields that 2τ ([x, y])d(x) = 0, for all x, y ∈ I. This
implies that

(11) τ ([x, y])d(x) = 0 , for all x, y ∈ I .

Now, replacing y by yz in(11) and using (11), we find that [x, y]zτ−1(d(x)) = 0,
for all x, y, z ∈ I and hence [x, y]IRτ−1(d(x)) = (0), for all x, y ∈ I. Thus,
primeness of R implies that for each x ∈ I, either [x, y]I = (0) or τ−1(d(x)) = 0.
Now, let A = {x ∈ I | [x, y]I = (0), for all y ∈ I}, B = {x ∈ I | τ−1(d(x)) = 0}.
Clearly, both A and B are additive subgroups of I whose union is I. By Brauer’s
trick we have either I = A or I = B. If I = B, then τ−1(d(x)) = 0, for all
x ∈ I and hence d(x) = 0, for all x ∈ I. For any r ∈ R, replace x by xr, to get
τ (x)d(r) = 0, for all x ∈ I. This implies that IRτ−1(d(r)) = (0), for all r ∈ R.
Since I 6= (0), and R is prime the above relation yields that τ−1(d(r)) = 0, for
all r ∈ R and hence d = 0, a contradiction. On the other hand if I = A, then
[x, y]I = (0), for all x, y ∈ I i.e. [x, y]RI = (0). Again since I 6= (0), we get
[x, y] = 0, for all x, y ∈ I and hence by the corollary of Lemma 1.1.5 of [10], R is
commutative.

The following example shows that the conclusion of the above theorem need
not be true if I is a one sided ideal of R even in the case if d is assumed to be a
derivation on R.
Example. Let R be a ring of 2 × 2 matrices over a field F ; let

I =
(

1 0
0 0

)
R =

{(
a b
0 0

)
a, b ∈ F

}
. Let d be the inner derivation of R

given by d(x) = x

(
0 1
0 0

)
−
(

0 1
0 0

)
x, for all x ∈ R. It is readily verified

that d satisfies the property d(xy) = d(yx), for all x, y ∈ I. However, R is not
commutative.
Theorem 4. Let R be a 2-torsion free prime ring and σ, τ be automorphisms of R.
Suppose that d1 and d2 are two (σ, τ )-derivations of R such that d1σ = σd1, d1τ =
τd1, d2σ = σd2 and d2τ = τd2. If d1d2(R) = 0, then either d1 = 0 or d2 = 0.

Proof. We have

(12) d1d2(x) = 0 , for all x ∈ R .

Replacing x by xy in (12) and using (12), we get

τ (d2(x))σ(d1(y)) + τ (d1(x))σ(d2(y)) = 0 , for all x, y ∈ R.
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Again replace x by τ−1(d2(x)) in the above expression and use (12), to get
d2

2(x)σ(d1(y)) = 0, for all x, y ∈ R and hence σ−1(d2
2(x))d1(y) = 0, for all

x, y ∈ R. Thus by Lemma 2.1 either σ−1(d2
2(x)) = 0, for all x ∈ R or d1 = 0. If

σ−1(d2
2(x)) = 0, for all x ∈ R, then d2

2(x) = 0, for all x ∈ R. Replacing x by xy and
using the fact that d2

2(R) = 0, we get 2τ (d2(x))σ(d2(y)) = 0, for all x, y ∈ R and
hence τ (d2(x))σ(d2(y)) = 0. Again replace y by σ−1(y), to get τ (d2(x))d2(y) = 0,
for all x, y ∈ R and hence again application of Lemma 2.1 gives that d2 = 0 or
τ (d2(x)) = 0, for all x ∈ R. If τ (d2(x)) = 0, for all x ∈ R, then d2 = 0. This
completes the proof of our theorem.
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