Previous |  Up |  Next

Article

Keywords:
coincidence point; fixed point; hybrid fixed points; weak compatibility; multi-valued mappings; asymptotically regular sequence
Summary:
The purpose of this note is to provide a substantial improvement and appreciable generalizations of recent results of Beg and Azam; Pathak, Kang and Cho; Shiau, Tan and Wong; Singh and Mishra.
References:
[1] Beg, I. and Azam, A.: Fixed point theorems for Kannan mappings. Indian J. Pure and Appl. Math. 17 (11) (1986), 1270–1275. MR 0868963
[2] Beg, I. and Azam, A.: Fixed points of asymptotically regular multivalued mappings. J. Austral. Math. Soc. (Series A) 50 (1992), 313–326. MR 1187851
[3] Conley, H. W.: Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 120 (2) (1986), 528–532. MR 0864769
[4] Das, K. M. and Naik, K. V.: Common fixed point theorems for commuting maps on a metric space. Proc. Amer. Math. Soc. 77 (1979), 369–373. MR 0545598
[5] Pathak, H. K.: Fixed point theorem for weak compatible multi-valued and single-valued mappings. Acta Math. Hungar. 67 (1-2) (1995), 69–78. MR 1316710
[6] Pathak, H. K., Kang, S. M. and Cho, Y. J.: Coincidence and fixed point theorems for nonlinear hybrid generalized contractions. Czechoslovak Math. J. 48 (123) (1998), 341–357. MR 1624260
[7] Nadler, S. B., Jr.: Multi-valued contraction mappings. Pacific J. Math. 20 (1989), 475–488. MR 0254828 | Zbl 0211.26001
[8] Nadler, S. B., Jr.: Hyperspaces of sets. Marcel Dekker, NY, 1978. MR 0500811 | Zbl 1125.54001
[9] Shiau, C., Tan, K. K. and Wong, C. S.: A class of quasi-nonexpansive multi-valued maps. Canad. Math. Bull. 18 (1975), 707–714. MR 0407667
[10] Singh, S. L. and Mishra, S. N.: Some remarks on concidencees and fixed points. C. R. Math. Rep. Acad. Sci. Canad. 18 (2-3) (1996), 66–70. MR 1411279
[11] Devaney, R. L.: A first course in chaotic dynamical systems: Theory and experiment. Addison-Wesley 1992. MR 1202237 | Zbl 0768.58001
Partner of
EuDML logo