[1] Beg, I. and Azam, A.:
Fixed point theorems for Kannan mappings. Indian J. Pure and Appl. Math. 17 (11) (1986), 1270–1275.
MR 0868963
[2] Beg, I. and Azam, A.:
Fixed points of asymptotically regular multivalued mappings. J. Austral. Math. Soc. (Series A) 50 (1992), 313–326.
MR 1187851
[3] Conley, H. W.:
Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 120 (2) (1986), 528–532.
MR 0864769
[4] Das, K. M. and Naik, K. V.:
Common fixed point theorems for commuting maps on a metric space. Proc. Amer. Math. Soc. 77 (1979), 369–373.
MR 0545598
[5] Pathak, H. K.:
Fixed point theorem for weak compatible multi-valued and single-valued mappings. Acta Math. Hungar. 67 (1-2) (1995), 69–78.
MR 1316710
[6] Pathak, H. K., Kang, S. M. and Cho, Y. J.:
Coincidence and fixed point theorems for nonlinear hybrid generalized contractions. Czechoslovak Math. J. 48 (123) (1998), 341–357.
MR 1624260
[7] Nadler, S. B., Jr.:
Multi-valued contraction mappings. Pacific J. Math. 20 (1989), 475–488.
MR 0254828 |
Zbl 0211.26001
[9] Shiau, C., Tan, K. K. and Wong, C. S.:
A class of quasi-nonexpansive multi-valued maps. Canad. Math. Bull. 18 (1975), 707–714.
MR 0407667
[10] Singh, S. L. and Mishra, S. N.:
Some remarks on concidencees and fixed points. C. R. Math. Rep. Acad. Sci. Canad. 18 (2-3) (1996), 66–70.
MR 1411279
[11] Devaney, R. L.:
A first course in chaotic dynamical systems: Theory and experiment. Addison-Wesley 1992.
MR 1202237 |
Zbl 0768.58001