Previous |  Up |  Next

Article

Keywords:
nonlinear boundary value problems; heteroclinic solutions; lower and upper solutions; singular boundary value problems
Summary:
We consider general second order boundary value problems on the whole line of the type $u^{\prime \prime }=h(t,u,u^{\prime })$, $u(-\infty )=0, u(+\infty )=1$, for which we provide existence, non-existence, multiplicity results. The solutions we find can be reviewed as heteroclinic orbits in the $(u,u^{\prime })$ plane dynamical system.
References:
[1] Cahn J. W., Mallet-Paret J., Van Vleck E. S.: Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59 (1999), 455–493. MR 1654427 | Zbl 0917.34052
[2] Chow S. N., Lin X. B., Mallet-Paret J.: Transition layers for singularly perturbed delay differential equations with monotone nonlinearities. J. Dynam. Differential Equations 1 (1989), 3–43. MR 1010959 | Zbl 0684.34071
[3] Hsu C. H., Lin, S S.: Existence and multiplicity of traveling waves in a lattice dynamical system. J. Diffetrential Equations 164 (2000), 431–450. MR 1765570 | Zbl 0954.34029
[4] Huang W.: Monotonicity of heteroclinic orbits and spectral properties of variational equations for delay differential equations. J. Differential Equations 162 (2000), 91–139. MR 1741874 | Zbl 0954.34071
[5] Erbe L., Tang M.: Structure of positive radial solutions of semilinear elliptic equations. J. Differential Equations 133 (1997), 179–202. MR 1427849 | Zbl 0871.34023
[6] Malaguti L., Marcelli C.: Existence of bounded trajectories via upper and lower solutions. Discrete Contin. Dynam. Systems 6 (2000), 575–590. MR 1757388 | Zbl 0979.34019
[7] Malaguti L., Marcelli C.: Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms. Math. Nachr. 242 (2002). MR 1916855 | Zbl 1016.35036
[8] Marcelli C., Rubbioni P.: A new extension of classical Müller’s theorem. Nonlinear Anal. 28 (1997), 1759–1767. MR 1432630 | Zbl 0877.34006
[9] O’Regan D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluwer Academic Publishers, 1997. MR 1449397 | Zbl 1077.34505
[10] Ortega R., Tineo A.: Resonance and non-resonance in a problem of boundedness. Proc. Amer. Math. Soc. 124 (1996), 2089–2096. MR 1342038 | Zbl 0858.34018
[11] Volpert V. A., Suhov, Yu. M.: Stationary solutions of non-autonomous Kolmogorov-Petrovsky-Piskunov equation. Ergodic Theory Dynam. Systems 19 (1999), 809–835. MR 1695921
[12] Walter W.: Differential and Integral Inequalities. Springer-Verlag, Berlin 1970. MR 0271508 | Zbl 0252.35005
Partner of
EuDML logo