[1] Cahn J. W., Mallet-Paret J., Van Vleck E. S.:
Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59 (1999), 455–493.
MR 1654427 |
Zbl 0917.34052
[2] Chow S. N., Lin X. B., Mallet-Paret J.:
Transition layers for singularly perturbed delay differential equations with monotone nonlinearities. J. Dynam. Differential Equations 1 (1989), 3–43.
MR 1010959 |
Zbl 0684.34071
[3] Hsu C. H., Lin, S S.:
Existence and multiplicity of traveling waves in a lattice dynamical system. J. Diffetrential Equations 164 (2000), 431–450.
MR 1765570 |
Zbl 0954.34029
[4] Huang W.:
Monotonicity of heteroclinic orbits and spectral properties of variational equations for delay differential equations. J. Differential Equations 162 (2000), 91–139.
MR 1741874 |
Zbl 0954.34071
[5] Erbe L., Tang M.:
Structure of positive radial solutions of semilinear elliptic equations. J. Differential Equations 133 (1997), 179–202.
MR 1427849 |
Zbl 0871.34023
[6] Malaguti L., Marcelli C.:
Existence of bounded trajectories via upper and lower solutions. Discrete Contin. Dynam. Systems 6 (2000), 575–590.
MR 1757388 |
Zbl 0979.34019
[7] Malaguti L., Marcelli C.:
Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms. Math. Nachr. 242 (2002).
MR 1916855 |
Zbl 1016.35036
[8] Marcelli C., Rubbioni P.:
A new extension of classical Müller’s theorem. Nonlinear Anal. 28 (1997), 1759–1767.
MR 1432630 |
Zbl 0877.34006
[9] O’Regan D.:
Existence Theory for Nonlinear Ordinary Differential Equations. Kluwer Academic Publishers, 1997.
MR 1449397 |
Zbl 1077.34505
[10] Ortega R., Tineo A.:
Resonance and non-resonance in a problem of boundedness. Proc. Amer. Math. Soc. 124 (1996), 2089–2096.
MR 1342038 |
Zbl 0858.34018
[11] Volpert V. A., Suhov, Yu. M.:
Stationary solutions of non-autonomous Kolmogorov-Petrovsky-Piskunov equation. Ergodic Theory Dynam. Systems 19 (1999), 809–835.
MR 1695921