Previous |  Up |  Next

Article

Keywords:
random fixed point; random map; measurable space; ordered Banach space
Summary:
Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $.
References:
[1] Beg I.: Random fixed points of random operators satisfying semicontractivity conditions. Math. Japon. 46 (1) (1997), 151–155. MR 1466128 | Zbl 0896.47053
[2] Beg I., Shahzad N.: Some random approximation theorem with applications. Nonlinear Anal. 35 (1999), 609–616. MR 1656922
[3] Bharucha-Reid A. T.: Random Integral Equations. Academic Press, New York , 1972. MR 0443086 | Zbl 0327.60040
[4] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), 641–657. MR 0413273 | Zbl 0339.60061
[5] Hans O.: Reduzierende zulliällige transformaten. Czechoslovak Math. J. 7 (1957), 154–158. MR 0090161
[6] Hans O.: Random operator equations. In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability Vol. II, Part I, 185–202, University of California Press, Berkeley 1961. MR 0146665 | Zbl 0132.12402
[7] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273. MR 0528687 | Zbl 0407.60069
[8] Jameson G.: Ordered Linear Spaces. Lecture Notes, Vol. 141, Springer Verlag, New York, 1970. MR 0438077 | Zbl 0196.13401
[9] Lishan L.: Some random approximations and random fixed point theorems for 1-set-contractive random operators. Proc. Amer. Math. Soc. 125 (1997), 515–521. MR 1350953
[10] Papageorgiou N. S.: Random fixed point theorems for measurable multifunctions in Banach spaces. Proc. Amer. Math. Soc. 97 (1986), 507–514. MR 0840638 | Zbl 0606.60058
[11] Schaefer H. H.: Topological Vector Spaces. Springer Verlag, New York, 1971. MR 0342978 | Zbl 0217.16002
[12] Sehgal V. M., Waters C.: Some random fixed point theorems. Contemporary Math. 21 (1983), 215–218. MR 0729519 | Zbl 0541.47041
[13] Špaček A.: Zufällige gleichungen. Czechoslovak Math. J. 5 (1955), 462–466. MR 0079854 | Zbl 0068.32701
[14] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations. Stochastic Anal. Appl. 15 (1) (1997), 103–123. MR 1429860
[15] Zaanen A. C. : Introduction to Operator Theory in Riesz Spaces. Springer Verlag, Berlin, 1997. MR 1631533 | Zbl 0878.47022
Partner of
EuDML logo