[1] Federson M.: Sobre a existência de soluções para Equações Integrais Lineares com respeito a Integrais de Gauge. Doctor Thesis, Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil, 1998, in portuguese.
[2] Federson M.:
The Fundamental Theorem of Calculus for multidimensional Banach space-valued Henstock vector integrals. Real Anal. Exchange 25 (1), (1999-2000), 469–480.
MR 1758903
[3] Federson M.: Substitution formulas for the vector integrals of Kurzweil and of Henstock. Math. Bohem., (2001), in press.
[4] Federson M., Bianconi R.:
Linear integral equations of Volterra concerning the integral of Henstock. Real Anal. Exchange 25 (1), (1999-2000), 389–417.
MR 1758896
[5] Gilioli A.:
Natural ultrabornological non-complete, normed function spaces. Arch. Math. 61 (1993), 465–477.
MR 1241052 |
Zbl 0783.46003
[6] Henstock R.:
A Riemann-type integral of Lebesgue power. Canad. J. Math. 20 (1968), 79–87.
MR 0219675 |
Zbl 0171.01804
[7] Henstock R.:
The General Theory of Integration. Oxford Math. Monogr., Clarendon Press, Oxford, 1991.
MR 1134656 |
Zbl 0745.26006
[8] Hönig C. S.:
The Abstract Riemann-Stieltjes Integral and its Applications to Linear Differential Equations with Generalized Boundary Conditions. Notas do Instituto de Matemática e Estatística da Universidade de São Paulo, Série Matemática, 1, 1973.
MR 0460561 |
Zbl 0372.34038
[9] Hönig C. S.:
Volterra-Stieltjes integral equations. Math. Studies 16, North-Holland Publ. Comp., Amsterdam, 1975.
MR 0499969
[10] Hönig C. S.:
Equations intégrales généralisées et applications. Publ. Math. Orsay, 83-01, exposé 5, 1–50.
Zbl 0507.45017
[11] Hönig C. S.: On linear Kurzweil-Henstock integral equations. Seminário Brasileiro de Análise 32 (1990), 283–298.
[12] Hönig C. S.: On a remarkable differential characterization of the functions that are Kurzweil-Henstock integrals. Seminário Brasileiro de Análise 33 (1991), 331–341.
[13] Hönig C. S.: A Riemannian characterization of the Bochner-Lebesgue integral. Seminário Brasileiro de Análise 35 (1992), 351–358.
[16] Lin, Ying-Jian:
On the equivalence of the McShane and Lebesgue integrals. Real Anal. Exchange 21 (2), (1995-96), 767–770.
MR 1407292
[17] MacLane S., Birkhoff G.:
Algebra. The MacMillan Co., London, 1970.
MR 0214415
[18] Mawhin J.: Introduction a l’Analyse. Cabay, Louvain-la-Neuve, 1983.
[19] McLeod R. M.:
The Generalized Riemann Integral. Carus Math. Monogr. 20, The Math. Ass. of America, 1980.
MR 0588510 |
Zbl 0486.26005
[20] McShane E. J.:
A unified theory of integration. Amer. Math. Monthly 80 (1973), 349–359.
MR 0318434 |
Zbl 0266.26008
[22] Schwabik S.:
The Perron integral in ordinary differential equations. Differential Integral Equations 6 (4) (1993), 863–882.
MR 1222306 |
Zbl 0784.34006
[23] Schwabik S.:
Abstract Perron-Stieltjes integral. Math. Bohem. 121 (4), (1996), 425–447.
MR 1428144 |
Zbl 0879.28021
[24] Tvrdý M.:
Linear integral equations in the space of regulated functions. Math. Bohem. 123 (2), (1998), 177–212.
MR 1673977 |
Zbl 0941.45001