1. R. P. Agarwal P. J. Y. Wong:
Advanced Topics in Difference Equations. Kluwer Academic Publishers, 1997.
MR 1447437
2. C.J. Earle R.S. Hamilton:
A fixed point theorem for holomorphic mappings. in Global Analysis Proceedings Symposium Pure Mathematics XVI, Berkeley, California, (1968), 61–65, American Mathematical Society, Providence, R.I., (1970).
MR 0266009
3. J. Feuer E. J. Janowski G. Ladas:
Invariants for Some Rational Recursive Sequences with Periodic Coeffcients. J. Diff. Equat. Appl. 2 (1996), 167–174.
MR 1384566
4. E. A. Grove E. J. Janowski C. M. Kent G. Ladas:
On the Rational Recursive Sequence $x_{n+1} = \frac{\alpha x_n + \beta}{(\gamma x_n \delta) x_{n-1}}$. Commun. Appl. Nonlinear Analysis 1 (1994), 61–72.
MR 1295493
5. E. A. Grove C. M. Kent G. Ladas:
Boundedness and Persistence of the Nonautonomous Lyness and Max Equations. J. Diff. Equat. Appl. 3 (1998), 241–258.
MR 1616018
6. E.K. Ifantis:
On the convergence of Power-Series Whose Coeffcients Satisfy a Poincaré-Type Linear and Nonlinear Difference Equation. Complex Variables 9 (1987), 63–80.
MR 0916917
7. G. Karakostas C. G. Philos Y. G. Sficas:
The dynamics of some discrete population models. Nonlinear Analysis, Theory, Methods and Applications 17 (11) (1991), 1069–1084.
MR 1136230
8. Li Longtu:
Global asymptotic stability of $x_{n+1} = F (x_n) g(x_{n−1})$. Ann. Diff. Equat, 14 (3) (1998), 518–525.
MR 1663227 |
Zbl 0963.39006
9. E.N. Petropoulou P.D. Siafarikas:
Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane. Arch. Math. (Brno) 36 (2) (2000), 139–158.
MR 1761618
10. E.N. Petropoulou P.D. Siafarikas:
Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane II. Comp. Math. Appl. (Advances in Difference Equations III), (to appear).
MR 1838005
11. I. A. Polyrakis:
Lattice Banach spaces, order-isomorphic to $l_1$. Math. Proc. Camb. Phil. Soc. 94 (1983), 519–522.
MR 0720802
12. R. Y. Zhang Z. C. Wang Y. Chen J. Wu:
Periodic solutions of a single species discrete population model with periodic harvest/stock. Comp. Math. Appl. 39 (1-2) (2000), 77–90.
MR 1729420