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Abstract. It is proved that some specific non-linear ordinary difference
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improve some previous known results.
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1. Introduction

In this paper, we study the homogeneous, non-linear difference equation:

f(n + 2) = λf(n + 1) + pf(n)e−σf(n), n = 1, 2, ...(1.1)

where 0 < λ < 1, σ > 0, 0 < p < (1−λ)e
2−λ

1−λ , p 6= 1−λ and the non-homogeneous,
non-linear difference equations:

f(n + 1) = −
b1(n + 1)

α1(n + 1)
+

h1(n + 1)

α1(n + 1)
f(n + 2)f(n + 1)f(n) +

+
d1(n + 1)

α1(n + 1)
f(n + 2)f(n), n = 1, 2, ...

(1.2)

⋆ Supported by the Greek National Foundation of Scholarships.
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f(n + 2) =
α2(n + 1)

h2(n + 1)
+

b2(n + 1)

h2(n + 1)
[f(n + 1)]2 −

−
1

h2(n + 1)
f(n + 2)[f(n)]2, n = 1, 2, ...

(1.3)

f(n + 1) = h3(n) + [f(n)]2, n = 0, 1, ...(1.4)

f(n + 1) = h4(n) + µf(n)

[

1 −
1

K
f(n)

]

, n = 1, 2, ...(1.5)

where µ ∈ R\{1}, K > 0 and α1(n+1), b1(n+1), h1(n+1), d1(n+1), α2(n+1),
b2(n + 1), h2(n + 1), h3(n) and h4(n) are suitably defined complex sequences.

Our aim is to prove that the equations (1.1)-(1.5) have a unique solution in
the Banach space:

l1 = {f(n) : N → C /‖f(n)‖l1 =
∞
∑

n=1

|f(n)| < +∞},(1.6)

For the motivation of seeking solutions of non-linear difference equations in l1 see
[1, pp. 84-112], [6]. Also it is known, see [11] and the references therein, that, under
various conditions, a positive generated, ordered Banach space is order-isomorphic
to l1. Finally, we would like to point out that, the real space l1|R, i.e.

l1|R = {f(n) : N → R /
∞
∑

n=1

|f(n)| < +∞},(1.7)

is suitable for problems of population dynamics, since the condition:

∞
∑

n=1

|f(n)| < +∞,

represents the realistic fact that the population f(n) is finite in every time instant
n.

The method we use is a functional analytic method developed by E. K. Ifantis in
[6] and used recently by P. D. Siafarikas and the author in [9], [10] for more general
forms of non-linear difference equations. Using this method, equations (1.1)-(1.5)
are reduced equivalenlty to operator equations on an abstract Banach space H1.
For our approach we also need the following result of Earle and Hamilton [2]:

If f : X → X is holomorphic, i.e. its Fréchet derivative exists, and f(X) lies

strictly inside X, then f has a unique fixed point in X, where X is a bounded,

connected and open subset of a Banach space E.

By saying that a subset X ′ of X lies strictly inside X we mean that there exists
an ǫ1 > 0 such that ‖x′ − y‖ > ǫ1 for all x′ ∈ X ′ and y ∈ E − X .

All our results except those concerning equation (1.5) for |µ| > 1, follow from
a general theorem (Theorem 2.1), which was proved in [10] and which we state for
the sake of completeness in Section 2.
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2. Preliminaries

In the following, H is used to denote an abstract separable Hilbert space with the
orthonormal basis en, n = 1, 2, 3, .... We use the symbols (·, ·) and ‖ · ‖ to denote
scalar product and norm in H respectively. By H1 we mean the Banach space

consisting of those elements f in H which satisfy the condition
∞
∑

n=1

|(f, en)| < +∞.

The norm in H1 is denoted by ‖f‖1 =
∞
∑

n=1

|(f, en)|. By f(n) we mean an element of

the Banach space l1 and by f =
∞
∑

n=1

f(n)en we mean that element in H1 generated

by f(n) ∈ l1. Finaly by V we mean the shift operator on H

V : V en = en+1, n = 1, 2, ...

and by V ∗ its adjoint

V ∗ : V ∗en = en−1, n = 2, 3, ..., V ∗e1 = 0.

It can easily be proved that the function

φ : H1 → l1

which is defined as follows:

φ(f) = (f, en) = f(n)

is an isomorphism from H1 onto l1. We call f the abstract form of f(n).
In general, if G is a mapping in l1 and N is a mapping in H1, we call N(f) the

abstract form of G(f(n)) if

G(f(n) = (N(f), en).

It follows easily that V ∗f is the abstract form of f(n + 1).
We state now the basic theorem that we use.

Theorem 2.1. [10] Consider the m − th order non-homogeneous, nonlinear dif-

ference equation:

f(n + m)+
m

∑

p=1

(αp + βp(n))f(n + m − p) = g(n) +
∞
∑

s=2

cs(n)[f(n + q)]s +

+
N

∑

i=1

∞
∑

k=1

dik(n)[f(n + qi1)f(n + qi2)]
k +

+
Λ

∑

t=1

∞
∑

k=1

btk(n)[f(n + qt3)f(n + qt4)f(n + qt5)]
k +

+
M
∑

j=1

∞
∑

k=1

ljk(n)[Ajf(n + qj6) + Bjf(n + qj7)]
kf(n + qj8)

(2.1)
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where m,N,M , Λ positive integers, q, qi1, qi2, i = 1, ..., N , qt3, tt4, qt5, t =
1, ..., Λ, qj6, qj7, qj8, j = 1, ...,M non-negative integers and αp, p = 1, ...,m in

general complex numbers. Assume that lim
n→∞

βp(n) = 0, ∀p = 1, ...,m, the complex

sequences cs(n), dik(n), btk(n), and ljk(n), s = 2, 3, ..., i = 1, ..., N , t = 1, ..., Λ,

j = 1, ...,M , k = 1, 2, 3, ... satisfy the conditions

sup
n

|cs(n)| ≤ γs, sup
n

|dik(n)| ≤ δik, sup
n

|btk(n)| ≤ βtk, sup
n

|ljk(n)| ≤ λjk

and the functions

G0(w) =
∞
∑

s=2

γsw
s, Gi(w) =

∞
∑

k=1

δikw2k,

Tt(w) =
∞
∑

k=1

βtkw3k, Fj(w) =
∞
∑

k=1

λjk(|Aj | + |Bj |)
kwk+1

are entire functions, or they have a sufficiently large radius of convergence. Assume

also that the roots of the algebraic equation

rm + α1r
m−1 + ... + αm = 0

satisfy the conditions |rp| < 1, p = 1, 2, ...,m. Then there exist positive numbers

R0 and P0 such that for

|u| + ‖g(n)‖l1 =|u1| + |α1u1 + u2| + ... +

+|αm−1u1 + αm−2u2 + ... + um| + ‖g(n)‖l1 < P0,
(2.2)

where

f(p) = up, p = 1, ...,m(2.3)

the equation (2.1) together with the initial conditions (2.3) has a unique solution

f(n) in l1. Moreover

∞
∑

n=1

|f(n)| < R0.(2.4)

Remark 1. The numbers R0 and P0 predicted by the above theorem are precisely
determined due to the constructive character of Theorem 2.1. In particular R0 is
the point at which the function

P1(R) = L−1R



1 − LR



M0(R) +
N

∑

i=1

Mi(R) + R
Λ

∑

t=1

∆t(R) +
M
∑

j=1

Qj(R)







 ,

(2.5)
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attains a maximum and P0 = P1(R0). In (2.5)

M0(R) =
∞
∑

s=2

γsR
s−2,Mi(R) =

∞
∑

k=1

δikR2k−2,(2.6)

∆t(R) =
∞
∑

k=1

βtkR3k−3, Qj(R) =
∞
∑

k=1

λjk(|Aj | + |Bj |)
kRk−1,(2.7)

1 ≤ i ≤ N , 1 ≤ t ≤ Λ, 1 ≤ j ≤ M are positive, continuous and increasing functions
of R in an open interval suitably defined and L is the norm or a bound of the norm
of the operator Γ−1, where

Γ = (I − r1V )(I − r2V )...(I − rmV ) + V m

m
∑

p=1

BpV
∗m−p.

Remark 2. From (2.4) it follows that:

|f(n)| < R0.

3. Applications

1) Consider the difference equation:

f(n + 2) = λf(n + 1) + pf(n)e−σf(n), n = 1, 2, ...(3.1)

where 0 < λ < 1, σ > 0, 0 < p < (1 − λ)e
2−λ

1−λ , p 6= 1 − λ. Equation (3.1) is the
discrete version of a population model described by a differential equation [7].

The equilibrium points of (3.1) are:

̺1 = 0, ̺2 =
1

σ
ln

p

1 − λ
> 0.

For the equilibrium point ̺1 = 0 equation (3.1) can also be written as follows:

f(n + 2) − λf(n + 1) − pf(n) =
∞
∑

s=2

(−1)s−1pσs−1

(s − 1)!
[f(n)]s.(3.2)

Equation (3.2) results from equation (2.1) for:

m = 2, α1 = −λ, α2 = −p, β1(n) ≡ β2(n) ≡ 0, g(n) ≡ 0,

dik(n) ≡ btk(n) ≡ ljk(n) ≡ 0, cs(n) =
(−1)s−1pσs−1

(s − 1)!
, q = 0.

In this case γs =
pσs−1

(s − 1)!
and G0(s) =

∞
∑

s=2

pσs−1

(s − 1)!
ws is an entire function. Also

the roots of the algebraic equation r2 − λr − p = 0 are

r1 =
λ +

√

λ2 + 4p

2
∈ (0, 1), r2 =

λ −
√

λ2 + 4p

2
∈ (−1, 0),
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for 0 < p < 1 − λ. Then

Γ = (I − r1V )(I − r2V ), L =
1

1 + p −
√

λ2 + 4p
,

P1(R) =
R

L
− R2

∞
∑

s=2

pσs−1

(s − 1)!
Rs−2.

It follows easily from Theorem 2.1 that for

|f(1)| + |f(2) − λf(1)| < P1(R0),(3.3)

equation (3.2) has a unique solution in l1, where R0 is the point at which P1(R)
attains a maximum. Thus lim

n→∞
f(n) = 0 and ̺1 = 0 is a locally asymptotically

stable equilibrium point of (3.2) with region of attraction given by (3.3). Also

|f(n)| < R0.

For the equilibrium point ̺2 =
1

σ
ln

p

1 − λ
we set

f(n) = F (n) + ̺2

and (3.2) becomes:

F (n + 2)−λF (n + 1) + p(̺2σ − 1)e−σ̺2F (n) =

=
∞
∑

s=2

(−1)s−1pe−σ̺2σs−1(s − σ)

s!
[F (n)]s.

(3.4)

Equation (3.4) results from equation (2.1) for:

m = 2, α1 = −λ, α2 = p(̺2σ − 1)e−σ̺2 , β1(n) ≡ β2(n) ≡ 0, g(n) ≡ 0,

dik(n) ≡ btk(n) ≡ ljk(n) ≡ 0, cs(n) =
(−1)s−1pe−σ̺2σs−1(s − σ)

s!
, q = 0.

In this case

γs =
pe−σ̺2σs−1|s − σ|

s!
=

(1 − λ)σs−1|s − σ|

s!

and G0(s) =
∞
∑

s=2

(1 − λ)σs−1|s − σ|

s!
ws is an entire function. Also the roots of the

algebraic equation

r2 − λr + p(̺2σ − 1)e−σ̺2 = 0 ⇔ r2 − λr + (1 − λ)(ln
p

1 − λ
− 1) = 0

are
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i)

r1 =
λ +

√

λ2 + 4(1 − λ)(1 − ln p
1−λ

)

2
∈ (0, 1),

r2 =
λ −

√

λ2 + 4(1 − λ)(1 − ln p
1−λ

)

2
∈ (−1, 0)

for 1 − λ < p < e(1 − λ),
ii)

r1 =
λ +

√

λ2 + 4(1 − λ)(1 − ln p
1−λ

)

2
∈ (0, 1),

r2 =
λ −

√

λ2 + 4(1 − λ)(1 − ln p
1−λ

)

2
∈ (0, 1)

for e(1 − λ) ≤ p < (1 − λ)e1+ λ
2

4(1−λ) ,

iii) r1 = r2 =
λ

2
∈ (0, 1) for p = (1 − λ)e1+ λ

2

4(1−λ) and

iv)

r1,2 =
λ ± i

√

−λ2 − 4(1 − λ)(1 − ln p
1−λ

)

2
and

|r1,2| =

√

(1 − λ)(ln
p

1 − λ
− 1) < 1

for (1 − λ)e1+ λ
2

4(1−λ) < p < (1 − λ)e
2−λ

1−λ . Then

Γ = (I − r1V )(I − r2V ),

and the corresponding bounds of Γ−1 are

i) L =
1

(1 − λ)(1 − ln p
1−λ

)
, ii) L =

1

(1 − λ)(ln p
1−λ

− 1)
,

iii) L =
4

(2 − λ)2
, iv) L =

1
(

1 −
√

(1 − λ)(ln p
1−λ

− 1
)2 , respectively.

Thus

P1(R) =
R

L
− R2

∞
∑

s=2

pe−σ̺2σs−1|s − σ|

s!
Rs−2.

It follows easily from Theorem 2.1 that for

|F (1)| + |F (2) − λF (1)| < P1(R0),(3.5)

equation (3.4) has a unique solution in l1, where R0 is the point at which P1(R)
attains a maximum. Thus lim

n→∞
F (n) = 0 and 0 is a locally asymptotically stable
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equilibrium point of (3.4) with region of attraction given by (3.5). Thus ̺2 =
1

σ
ln

p

1 − λ
is a locally asymptotically stable equilibrium point of (3.1) with region

of attraction given by:

|f(1) −
1

σ
ln

p

1 − λ
| + |f(2) − λf(1) +

λ − 1

σ
ln

p

1 − λ
| < P1(R0),(3.6)

Also

|f(n)| ≤ |F (n)| + ̺2 ⇔ |f(n)| < R0 +
1

σ
ln

p

1 − λ

and equation (3.1) has a unique solution in l1 +

{

1

σ
ln

p

1 − λ

}

.

Remark 3. Equation (3.1) is a particular case (for ν = 1) of the equation:

f(n + ν + 1) = λf(n + ν) + pf(n)e−σf(n),(3.7)

which was studied, among other things, in [7]. It was shown there that any solution
of (3.7) converges to its positive equilibrium point ̺2 as n → ∞ if p ∈ (1−λ, (1−

λ)e]. Notice that this is a subset of (1 − λ, (1 − λ)e
2−λ

1−λ ].

Remark 4. Relations (3.3) and (3.5) describe the region of attraction for the equi-
librium points ̺1 and ̺2 respectively. Note that these inequalities do not give
explicitly the regions of attraction, because we do not know the point R0, but we
can achieve that by truncating the power series, of which P1(R) is consisted.

Remark 5. If the initial conditions f(1), f(2) are positive numbers then every real
solution of (3.1) is positive.

2) Consider the difference equation:

f(n + 1) = −
b1(n + 1)

α1(n + 1)
+

h1(n + 1)

α1(n + 1)
f(n + 2)f(n + 1)f(n) +

+
d1(n + 1)

α1(n + 1)
f(n + 2)f(n), n = 1, 2, ...

(3.8)

where
b1(n + 1)

α1(n + 1)
∈ l1, sup

n
|
h1(n + 1)

α1(n + 1)
| ≤ β and sup

n
|
d1(n + 1)

α1(n + 1)
| ≤ δ.

Equation (3.2) appears often in various applications. In this case ∆1(R) = β,
M1(R) = δ are entire functions and Γ = I, L = 1. Thus

P1(R) = R − δR2 − βR3.

It follows easily that R0 =

√

δ2 + 3β − δ

2
and P0 =

(2δ2 + 6β)(
√

δ2 + 3β − δ)

27β2
−

δ

9β
. By applying Theorem 2.1 to equation (3.8) we find that for

|f(1)| + ‖
b1(n + 1)

α1(n + 1)
‖l1 <

(2δ2 + 6β)(
√

δ2 + 3β − δ)

27β2
−

δ

9β
,
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equation (3.8) has a unique bounded solution in l1 with bound:

|f(n)| <

√

δ2 + 3β − δ

2
.

In the special case where d1(n+1) ≡ 1 and h1(n+1) ≡ 0, equation (3.8) becomes:

f(n + 1) = −
b1(n + 1)

α1(n + 1)
+

1

α1(n + 1)
f(n + 2)f(n),(3.9)

which is the well-known non-autonomous Lyness equation. As before, we find that

Γ = I, L = 1 and P1(R) = R − δR2. Thus R0 =
1

2δ
and P0 =

1

4δ
. By applying

Theorem 2.1 to equation (3.3) we find that for

|f(1)| + ‖
b1(n + 1)

α1(n + 1)
‖l1 <

1

4δ
,

equation (3.9) has a unique bounded solution in l1 with bound:

|f(n)| < R0 =
1

2δ
.

Remark 6. In the case when equation (3.8) has positive solutions and α1(n + 1),
b1(n + 1), h1(n + 1), d1(n + 1) are constants, equation (3.8) was studied in [4].
Invariants for equation (3.8) have been found in [3], in the case when α1(n + 1),
b1(n + 1), h1(n + 1), d1(n + 1), are periodic sequences of positive numbers and
the initial conditions are positive numbers. The non-autonomous Lyness equation
(3.9) was studied, among other things, in [5]. In particular it was shown there that
under some different, than those we used, but more complicated conditions on the
sequences α1(n + 1) and b1(n + 1), every positive solution of (3.9) is bounded.

3) Consider the difference equation:

f(n + 2) =
α2(n + 1)

h2(n + 1)
+

b2(n + 1)

h2(n + 1)
[f(n + 1)]2 −

−
1

h2(n + 1)
f(n + 2)[f(n)]2, n = 1, 2, ...

(3.10)

where
α2(n + 1)

h2(n + 1)
∈ l1, sup

n
|
b2(n + 1)

h2(n + 1)
| ≤ γ and sup

n
|

1

h2(n + 1)
| ≤ λ.

In this case M0(R) = γ, Q1(R) = λR are entire functions and Γ = I2 = I,
L = 1. Thus

P1(R) = R − γR2 − λR3.

It follows easily that R0 =

√

γ2 + 3λ − γ

2
and P0 =

(2γ2 + 6λ)(
√

γ2 + 3λ − γ)

27λ2
−

γ

9λ
. By applying Theorem 2.1 to equation (3.10) we find that for

|f(1)| + |f(2)| + ‖
α2(n + 1)

h2(n + 1)
‖l1 <

(2γ2 + 6λ)(
√

γ2 + 3λ − γ)

27λ2
−

γ

9λ
,
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equation (3.10) has a unique bounded solution in l1 with bound:

|f(n)| <

√

γ2 + 3λ − γ

2
.

Remark 7. Equation (3.10) has been studied in [8] for α2(n + 1), b2(n + 1) and
h2(n + 1) constants.

4) Consider the difference equation:

f(n + 1) = h3(n) + [f(n)]2, n = 1, 2, . . .(3.11)

where h3(n) ∈ l1.
In this case M0(R) = 1 is an entire function and Γ = I, L = 1. Thus

P1(R) = R − R2.

It follows easily that R0 =
1

2
and P0 =

1

4
. By applying Theorem 2.1 to equation

(3.11) we find that for

|f(1)| + ‖h3(n)‖l1 <
1

4
,(3.12)

equation (3.11) has a unique bounded solution in l1 with bound:

|f(n)| <
1

2
.

Also notice that (3.11) can also be written as:

f(n + 1)

f(n)
=

h3(n)

f(n)
+ f(n).

Thus if K = lim
n→∞

h3(n)

f(n)
exists then lim

n→∞

f(n + 1)

f(n)
= K and the generating ana-

lytic function f(z) =
∞
∑

n=1

f(n)zn−1 converges absolutely for |z| <
1

K
.

Remark 8. In the case where h3(n) ≡ h /∈ l1, equation (3.11) becomes the well-
known equation from which the Mandlebrot and the Julia sets are deduced. More
particularly, the set of all points h for which the solution f(n) of (3.11) with
f(1) = 0 stays bounded as n → ∞ is called the Mandlebrot set (M) and for a
given parameter h = constant, the set of initial values f(0) for which f(n) stays
bounded is the so-called filled-in Julia set (Jc). (The Julia set proper consists of
the boundary points of Jc.)
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Thus for f(1) = 0 we obtain from (3.12):

‖h3(n)‖l1 <
1

4
,

which can be considered as a generalized Mandelbrot set.
Also for h3(n) a given sequence of l1, relation (3.12) can be considered as a

generalized Julia set.
Notice that when h3(n) ≡ h = constant, our method can not be applied,

because h does not belong in l1.

5) Consider the difference equation:

f(n + 1) = h4(n) + µf(n)

[

1 −
1

K
f(n)

]

, n = 1, 2, ...(3.13)

where µ ∈ R \ {1}, K > 0 and h4(n) ∈ l1.
Equation (3.13) describes the development of a single species population f(n),

where µ is the parameter related to the growth or death rate, K > 0 is the carrying
capacity and h4(n) represents the harvest/stock [12].

We shall distinguish the following two cases:
1) First case: |µ| < 1.

Here M0(R) = |µ|
K

is an entire function and Γ = I − µV , L = 1
1−|µ| . Thus

P1(R) = (1 − |µ|)R −
|µ|

K
R2.

It follows easily that R0 =
(1 − |µ|)K

2|µ|
and P0 =

(1 − |µ|)2K

4|µ|
. By applying Theo-

rem 2.1 to equation (3.13) we find that for

|f(1)| + ‖h4(n)‖l1 <
(1 − |µ|)2K

4|µ|
, |µ| < 1

equation (3.13) has a unique bounded solution in l1 with bound:

|f(n)| <
(1 − |µ|)K

2|µ|
, |µ| < 1.

2) Second case: |µ| > 1.
In this case, Theorem 2.1 can not be applied to equation (3.13) because the

unique solution of the algebraic equation

r − µ = 0

is r = µ and |µ| > 1.
Notice that equation (3.13) can also be written as:

f(n) −
1

µ
f(n + 1) = −

1

µ
h4(n) +

1

K
[f(n)]2, n = 1, 2, ...(3.14)
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According to the representation presented in Section 2, the abstract form of (3.14)
in H1 is:

(

I −
1

µ
V ∗

)

f = N(f) −
1

µ
h4,(3.15)

where h4 is the abstract form of h4(n) and N(f) = 1
K

(f, en)(f, en)en, is a Fréchet
differentiable operator defined on all H1 with ‖N(f)‖1 ≤ ‖f‖2

1 ([9] or [10]).

Since |µ| > 1, the operator
(

I − 1
µ
V ∗

)−1

is uniquely determined on H1 and

bounded, with bound:

‖

(

I −
1

µ
V ∗

)

‖1 <
|µ|

|µ| − 1
.

Thus (3.15) becomes

f =

(

I −
1

µ
V ∗

)−1 [

N(f) −
1

µ
h4

]

.(3.16)

Following a technique similar to the one used in [6], [9], [10] we define the function:

φ(f) =

(

I −
1

µ
V ∗

)−1 [

N(f) −
1

µ
h4

]

.

Let ‖f‖1 ≤ R < R̄ < +∞, where R̄ is as large as we want, but finite. Then from
(3.16) we obtain:

‖φ(f)‖1 ≤
|µ|

|µ| − 1

[

R2

K
+

1

|µ|
‖h4‖1

]

.(3.17)

Since R̄ is sufficienlty large, there exists an R̄1 ∈ [0, R̄] such that

|µ|

|µ| − 1

R̄1

K
> 1.

Thus the value R̄2 =
(|µ| − 1)K

|µ|
is a zero of the function

P (R) = 1 −
|µ|

|µ| − 1

R̄1

K
.

So the continuous function

P1(R) =
|µ| − 1

|µ|
RP (R)

satisfies P1(0) = P1(R̄2) = 0 and therefore attains a maximum at the point

R0 =
(|µ| − 1)K

2|µ|
∈ (0, R̄2).
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Now for every ǫ > 0, R = R0 and

‖h4‖1 ≤
(|µ| − 1)2K

4|µ|
− (|µ| − 1)ǫ

we find from (3.17)

‖φ(f)‖1 ≤
(|µ| − 1)K

2|µ|
− ǫ = R0 − ǫ < R0

for ‖f‖1 < R0. This means that for

‖h4‖1 <
(|µ| − 1)2K

4|µ|

φ is a holomorphic map from B
(

0, (|µ|−1)K
2|µ|

)

strictly inside B
(

0, (|µ|−1)K
2|µ|

)

. Thus

applying the fixed point theorem of Earle and Hamilton [2] we find that equation
φ(f) = f has a unique fixed point in H1. This means equivalently that for

‖h4(n)‖l1 <
(|µ| − 1)2K

4|µ|
, |µ| > 1

equation (3.14) has a unique bounded solution in l1 with bound:

|f(n)| <
(|µ| − 1)K

2|µ|
, |µ| > 1.

Remark 9. In [12] the real periodic solutions of (3.14) have been investigated for
µ ∈ (1, 2) and h4(n) : N → R an ω periodic number sequence with ω ≥ 1 which
satisfies the relation:

‖h4‖ <
(|µ| − 1)2K

4|µ|
, µ ∈ (1, 2)

where ‖h4‖ = max
n

|h4(n)|. Moreover it was found in [12] that the predicted peri-

odic solution satisfies:

|f(n)| <

(

1 −
1

µ

)

Kr0, r0 ∈ (0, 1/2), µ ∈ (1, 2).

Remark 10. Our results, concerning all five applications hold also, if we consider
the Banach space l1|R instead of l1.
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