[1] Agoh, T., Dilcher, K., Skula, L.:
Wilson quotients for composite moduli. Comp. Math. 67 (1998). No. 222, 843–861.
MR 1464140
[2] Bayat, M.:
A generalization of Wolstenholme’s theorem. Amer. Math. Monthly 109 (1997), 557–560.
MR 1453658 |
Zbl 0916.11002
[3] Dilcher, K., Skula, L., Slavutskii, I. Sh.:
Bernoulli numbers. Bibliography (1713–1990). Queen’s papers in Pure and Applied Mathematics, 1991, No. 87, 175 pp.; Appendix, Preprint (1994), 30 pp.
MR 1119305
[4] Hardy, G. H., Wright, E. M.:
An introduction to theory of numbers. 5th ed., Oxford Sci. Publ., 1979.
MR 0067125
[5] Lehmer, E.:
On congruences involving Bernoulli numbers and quotients of Fermat and Wilson. Ann. Math. 39 (2) (1938), 350–360.
MR 1503412
[6] Leudesdorf, C.: Some results in the elementary theory of numbers. Proc. London Math. Soc. 20 (1889), 199–212.
[7] Rama Rao, M.: An extention of Leudesdorf theorem. J. London Math. Soc. 12 (1937), 247–250.
[8] Slavutskii, I.:
Staudt and arithmetic properties on Bernoulli numbers. Hist. Scient. 5 (1995), 70–74.
MR 1349737
[10] Washington, L. C.:
Introduction to cyclotomic fields. 2nd ed., Springer-Verlag, New York, 1997.
MR 1421575 |
Zbl 0966.11047
[11] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Math. 5 (1862), 35–39.