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For m ∈ , (m,6) = 1, it is proved the relations between the sums

W (m,s) =
m−1

i=1,(i,m)=1

i−s , s ∈ ,

and Bernoulli numbers. The result supplements the known theorems of C. Leudes-
dorf, N. Rama Rao and others. As the application it is obtained some connections
between the sums W (m, s) and Agoh’s functions, Wilson quotients, the indices ir-
regularity of Bernoulli numbers.

1. Denote W (m, s) =
∑m−1
i=1,(i,m)=1 i

−s with m, s ∈ N. As a generalization of the
known Wolstenholme’s theorem [11] C. Leudesdorf has proved

Theorem 1 [6].
W (m, 1) ≡ 0(modm2), (m, 6) = 1 .

Some extensions of the result is contained in the known monograph of G. H.
Hardy and E. M. Wright ([4], Ch. VIII). See also [7].

Here we study the connection between the sums W (m, s) and Bernoulli num-
bers (or Agoh’s functions containing Bernoulli numbers). These relations may be
considered as the further generalization of Leudesdorf’s theorem.

2. First of all we will remind some notations. Below Bernoulli polynomialsBn(x),
n ≥ 0, can be defined by

Bn(x) =
n∑
r=0

(n!/(r!(n− r)!))Brxn−r ,

where Bernoulli numbers Bn are defined by the generating function

t/(et − 1) =
∞∑
n=0

Bnt
n/n! , |t| < 2π .
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As known, B0 = 1, B1 = −1
2 , B2n+1 = 0 for n ∈ N (see, e.g., [10], Ch. V or [3]).

We will also use Agoh’s functions

Hn(m) =
∏
p|m

(1− pn−1)Bn , n ≥ 0 ,

with the product taken over all primes divisors p of m. With the help of the
functions it follows (see, e.g., [1],§2)

(1)
m−1∑

i=1,(i,m)=1

in =
n+1∑
i=1

(n!/((i − 1)!(n+ 1− i)!))Hn+1−i(m)mi/i .

Further, by Fermat-Euler theorem 1 ≡ iϕ(m2)(modm2), (m, i) = 1, we have
i−s ≡ it(modm2) with t = (ϕ(m2) − 1)s, so that

W (m, s) ≡
m−1∑

i=1,(i,m)=1

it(modm2)

or

(2) W (m, s) ≡
t+1∑
i=1

(t!/((i− 1)!(t+ 1− i)!))Ht+1−i(m)mi/i(modm2) .

Now, if (m, 6) = 1 then for a prime number p with p|m it follows that p ≥ 5.
Hence, by Staudt-Clausen theorem (for denominators of Bernoulli numbers) we
obtain

ordp(Bt+1−im
i−2/i) ≥ 0

for i ≥ 3 and for all prime numbers p ≥ 5 with p|m. Thus, using the values of
Agoh’s functions Hi(m) we conclude from the congruence (2) that

(3) W (m, s) ≡ m
∏
p|m

(1− pt−1)Bt + (tm2/2)
∏
p|m

(1− pt−2)Bt−1(modm2) .

Now we are in position to prove

Theorem 2. In the above notations it follows

W (m, s) ≡


m
∏
p|m

(1− pt−1)Bt for 2|s

(t/2)m2
∏
p|m

(1− pt−2)Bt−1 otherwise

 (modm2) .

Proof. First suppose that 2|s. Then t− 1 is the odd number, Bt−1 = 0 and the
congruence (3) implies

(4) W (m, s) ≡ m
∏
p|m

(1− pt−1)Bt(modm2) .

In the second case the number t is the odd number and we have

(5) W (m, s) ≡ (t/s)m2
∏
p|m

(1− pt−2)Bt−1(modm2) . �

The congruence (4) and (5) are contained all known generalizations of Leudes-
dorf’s theorem.
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Corollary 1.
(a) If 2|s and (p,m) = 1 for all prime numbers p such that (p − 1)|s, then

(4’) W (m, s) ≡ 0 (modm) .

(b) Let s be an odd number. If 1) p − 1 don’t divide s + 1 for every prime
number p with p|m; or 2) p|s for all prime numbers p that (p−1)|(s+ 1) and p|m,
then it follows

(5’) W (m, s) ≡ 0 (modm2) .

Indeed, in the case 2|s the congruence (4’) is the consequence of Staudt-Clausen
theorem. On the other hand, if s is an odd number then: 1) for every prime number
p with p|m we have t− 1 ≡ −(s + 1)(mod(p − 1)) and (again by Staudt-Clausen
theorem) ordpBt−1 ≥ 0 provided that p−1 don’t divide s+1; 2) for a prime number
p with (p− 1)|(s+ 1) and p|m we obtain that ordp(tBt−1) = ordp(sBt−1) ≥ 0. In
the both cases the congruence (5’) follows.

It is evident that the congruence (5’) with s = 1 contains Leudesdorf’s theorem
because p > 3.

3. Consider now the special case. Namely, let be m = pl, l ∈ N where p ≥ 5 is a
prime number. Then the congruence (4) implies

(6) W (pl, s) ≡ plBt(modp2l) ,

where t = (ϕ(p2l)− 1)s, 2|s. If (p− 1)|s then ordpBt = −1. So that denoting for
a brevity α = ordpW (pl, s), in this case we have α = l − 1. Otherwise, α ≥ l.

Turning now to the congruence (5) with an odd number s we obtain

(7) W (pl, s) ≡ (t/2)p2lBt−1(modp2l), t = (ϕ(p2l)− 1)s .

Further, if s ≡ a(mod(p− 1)) and 1 ≤ a < p− 2 then

t − 1 ≡ −(a + 1)(mod(p− 1)), 2 ≤ a + 1 < p− 1 ,

so that ordpBt−1 ≥ 0 and from the congruence (7) we conclude that α ≥ 2l.
If a = p − 2, e.g., t − 1 ≡ 0(mod(p − 1)), then α ≥ 2l for p|s and α ≥ 2l − 1

otherwise. Thus, we obtain

Corollary 2. Let s be a natural number and s ≡ a(mod(p− 1)), 1 ≤ a ≤ p− 1.
In the above notations we have

(i) α ≥ 2l for an odd natural s with 1 ≤ a < p−3 or for s ≡ p−2(mod(p−1))
with p|s;

(ii) α ≥ 2l − 1 for s ≡ p− 2(mod(p− 1)) and (p, s) = 1;
(iii) α ≥ l for an even natural s with 1 ≤ a ≤ p− 3;
(iv) α = l − 1 for s ≡ 0(mod(p− 1)) .

Remark. In theorem 4 of the paper [2] we can find the try of a proof of Corol-
lary 2, but the cited paper, unfortunately, contains some mistakes (both in the
formulations and in the proofs of the theorems).
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4. Here we will indicate two examples of connections between the results and some
“popular” objects of the theory of numbers.

I. It was recently proved the generalized Carlitz theorem ([9]). In particular,
for Bernoulli numbers Bn with (p− 1)|n it was proved the congruence

(8) pBb(p−1)pl−1 ≡ p− 1 + bplwp(modpl+1) ,

where p is an odd prime, b, l ∈ N and wp = ((p − 1)! + 1)/p is Wilson quotient.
Putting s ≡ 0(mod(p − 1)pl−1) in the congruence (6) we obtain (with the help of
the congruence (8)) that

W (pl, s) ≡ plBt ≡ pl−1(p− 1 + ptwp/(p− 1))(modp2l)

or

W (pl, s) ≡ pl−1(p − 1)− plswp/(p− 1)(modp2l)

or

W (pl, s) ≡ ϕ(pl) + plswp(modp2l)

or

W (pl, s)/pl ≡ 1− 1/p+ swp(modpl)(9)

As above, here t = (ϕ(p2l) − 1)s and for rational numbers a, b the congruence
a ≡ b(modpl) means that ordp(a− b) ≥ l for the p-integer number a− b, as usual.

These congruences supplement some known results of E. Lehmer [5] and others.
Let now s ≡ 0(mod(p − 1)pl−1) and ordp s = l − 1. As known, if wp ≡ 0(modp)
then p is called Wilson prime number. Therefore, we can note that

W (pl, s)/pl ≡ 1− 1/p(modpl), l ∈ N , ⇐⇒ p is Wilson prime number.

II. Turn now to the congruence (6) with l = 1 and s = a, 2|a, 2 ≤ a ≤ p− 3 (as
above p > 3 is a prime number). Since by the known Staudt-Kummer congruence
(see Slavutskii [8] for historical details and terminology)

Bt/t ≡ Bp−1−a/(p− 1− a)(modp)

with t = (p(p− 1)− 1)a = (pa− 1)(p− 1) + (p− 1− a) we obtain

pBt ≡ apBp−1−a/(a+ 1)(modp2) ,

so from the congruence (6) it follows

(10) W (p, a) ≡ apBp−1−a/(a+ 1)(modp2), 2|a , 2 ≤ a ≤ p − 3 .

Further, as known, the pair (p, i) is called irregular if ordpBi ≥ 1 with 2 ≤ i ≤
p− 3, 2|i. Then the congruence (10) reduces to

Corollary 3. For an even integer a with a < p− 2 and a prime number p > 3 it
holds

(p, p− 1− a) is an irregular pair ⇐⇒W (p, a) ≡ 0(modp2)

(e.g., if the last congruence is valid for r such numbers a then the index of irreg-
ularity of p equals r).
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