Article
Keywords:
double vector bundles; duality
Summary:
The notions of the dual double vector bundle and the dual double vector bundle morphism are defined. Theorems on canonical isomorphisms are formulated and proved. Several examples are given.
References:
[1] Grabowski, J., Urbański, P.:
Tangent lifts of Poisson and related structures. J. Phys. A. 28 (1995), 6743–6777.
MR 1381143
[2] Mackenzie, K. C. H.:
Double Lie algebroids and second-order geometry I. Adv. Math. 94 (1992), 180-239.
MR 1174393 |
Zbl 0765.57025
[3] Pradines, J.:
Géométrie differentielle au-dessus d’un grupoïde. C. R. Acad. Sci. Paris, série A 266 (1968), 1194-1196.
MR 0231306
[4] Pradines, J.:
Représentation des jets non holonomes par des morphismes vectoriels doubles soudés. C. R. Acad. Sci. Paris, série A 278 (1974), 1523-1526.
MR 0388432 |
Zbl 0285.58002
[5] Tulczyjew, W. M.:
Geometric Formulations of Physical Theories. Bibliopolis, Napoli, 1989.
MR 1026453 |
Zbl 0707.58001
[6] Tulczyjew, W. M.:
Les sous-varieétés lagrangiennes et la dynamique lagrangienne. C. R. Acad. Sci. Paris, série A 283 (1976), 675-678.
MR 0420715
[7] Tulczyjew, W. M.:
Les sous-varieétés lagrangiennes et la dynamique hamiltonienne. C. R. Acad. Sci. Paris, série A 283 (1976), 15-18.
MR 0420714
[8] Urbański, P.:
Double vector bundles in classical mechanics. Rend. Sem. Mat. Torino (1997).
MR 1618142
[9] Yano, K., Ishihara, S.:
Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
MR 0350650