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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 59 { 95DOUBLE VECTOR BUNDLES AND DUALITYKatarzyna Konieczna and Pawe l Urba�nskiAbstract. The notions of the dual double vector bundle and the dual double vectorbundle morphism are de�ned. Theorems on canonical isomorphisms are formulatedand proved. Several examples are given.1. IntroductionThe notion of a double vector bundle was introduced by Pradines in [3]. Themost important examples of double vector bundles are given by iterated tangentand cotangent functors applied to a manifold M : TTM , T�TM , TT� M , andT�T� M . The double vector bundle structure on TTM makes possible the La-grangian formulation of the dynamics in classical mechanics ([5]). It appears thatthe framework of double vector bundles is very convenient for many importantconstructions like linear 1-forms, linear Poisson structures, special symplectic man-ifolds, linear connections etc.The paper is organized as follows. In Sections 2 and 3 we present in detail thede�nitions of a double vector bundle following Mackenzie [2], and morphisms ofdouble vector bundles. The tangent TE to a vector bundle E is an example of adouble vector bundle. In Section 4 we show that the bundle dual to a double vectorbundle with respect to the right (or left) vector bundle structure is, in a naturalway, a double vector bundle. In particular, the cotangent functor applied to avector bundle E provides the double vector bundle T� E . Also the mapping dualto a morphism of double vector bundles is a morphism of double vector bundles(Section 5). The main result of the paper is contained in Section 6. We showthat the third right dual to a double vector bundle K is canonically isomorphicto K. In the case of K = T�E, the third dual can be identi�ed with T�E�. Theisomorphism RK :K ! K�r�r�r of Theorem 17 gives in this case the canonicalisomorphism of T�E and T�E�. The graph of this isomorphism is a Lagrangiansubmanifold of T�(E � E

�) ' T� E � T� E

� generated by the pairing between Eand E�.1991 Mathematics Subject Classi�cation : 53C15, 53C80.Key words and phrases: double vector bundles, duality.Supported by KBN, grant No 2 PO3A 074 10.Received February 1998.



60 K. KONIECZNA, P. URBA�NSKIWith the canonical identi�cations ofK with K�r�r�r and ofK0 with K0�r�r�r ,the third dual to a double vector bundle morphism �:K!K0 is equal ��1.In Section 7 we show that the framework of double vector bundles is suitable forconcepts like linear vector �elds and forms, linear Poisson and symplectic struc-tures, vertical and complete lifts, and linear connections. We discuss in detailthe case of linear connections, compatible with a metric on E, and symmetricconnections on the tangent and cotangent bundles.The main results of this paper were presented at the conference in Vietri sulMare, October 97, and one can �nd their formulations in the proceedings of thisconference ([8]). 2. Double vector bundlesLet K be a system (Kr ; Kl ; E; F) of vector bundles, where Kr = (K ; � r ; E ),Kl = (K ; � l ; F ), E = (E ; �� l ; M ), and F = (F ; �� r ; M ), such that the diagram(1) K



�� l NNNNP� r
F NNNNP�� r E



��� l

Mis commutative.We introduce the following notation:(1) mr, ml, �mr, and �ml will denote the operation of addition in Kr , Kl, E,and F respectively.(2) we use also v +r w for mr(v ; w ), v +l w for ml(v ; w ), and simply + for allother additions,(3) 0r , 0l, �0r, �0l will denote the zero sections of � r, � l, �� r, and �� l respectively.Let us suppose that the pair (� r ; �� r) is a vector bundle morphism Kl ! E.It follows that K �E K is a vector subbundle of Kl � Kl with (� l � � l)(K �E
K ) = F �M F . We denote this subbundle by Kl �E Kl. Moreover, the additionmr: K �E K ! K is a �ber bundle morphism which projects to �mr: F �M F ! F .De�nition 1. A double vector bundle K is a system (Kr ; Kl ; E; F) of vectorbundles Kr = (K ; � r ; E ), Kl = (K ; � l ; F ), E = (E ; �� l ; M ) and F = (F ; �� r ; M ) suchthat the diagram (1) is commutative and the following conditions are satis�ed:(1) pairs (� l ; �� l), (� r ; �� r) are vector bundle morphisms,(2) pairs of additions (ml ; �ml) and (mr ; �mr) are vector bundle morphismsKr �F Kr !Kr and Kl �E Kl !Kl respectively,(3) zero sections 0r:E!Kl, 0l:F!Kr are vector bundle morphisms.In the following we use the diagram (1) to represent the double vector bundleK.



DOUBLE VECTOR BUNDLES AND DUALITY 61Proposition 2. The vector bundle structures of Kr and Kl coincide on the in-tersection C of ker � l and ker � r .Proof. Since � r and � l are linear in �bers it follows that for each m 2 M , we have0r � �0l(m ) 2 C ; 0l � �0r(m ) 2 C :Let us denote 0r(m ) = 0r � �0l(m ), 0l(m ) = 0l � �0r(m ). Since ml:Kl �F Kl !Klis a vector bundle morphism, we haveml(0r(m ); 0r(m )) = 0r(m ):It follows that 0r(m ) is a neutral element of ml, i.e, 0l = 0r . For k ; k

0 2 C , suchthat �� l(� r(k )) = �� l(� r(k

0)) = m , we have(k ; k

0) = (0r(m ); k

0) +r (k ; 0r(m )) = (0l(m ); k

0) +r (k ; 0l(m ))and, consequently,ml(k ; k

0) = ml(k ; 0l(m )) +r ml(0l(m ); k

0) = k +r k

0
: �Thus, we have a vector bundle C = (C ; � ; M ), where � = �� l � � r = �� r � � l. Thisvector bundle is called the core of K.Proposition 3.(1) ker � r with the vector bundle structure induced from Kr is canonicallyisomorphic to the Whitney sum F �M C.(2) ker � r with the vector bundle structure induced from Kl is canonicallyisomorphic to the vector bundle F �M C, i.e., to the pull-back of C bythe projection �� r .(3) ker � l with the vector bundle structure induced from Kl is canonicallyisomorphic to the Whitney sum E �M C.(4) ker � l with the vector bundle structure induced from Kr is canonicallyisomorphic to the vector bundle E �M C, i.e., to the pull-back of C bythe projection �� l.Proof.(1) Since the zero section 0l is a vector bundle morphism0l:F!Kr ;its image 0l(F ) is a vector subbundle of Kr , contained in ker � r and isomorphicto F.Let v 2 ker � r and let m = �� l � � r(v ) = �� r � � l(v ). We have � r(v ) = �0l and, since

v 2 ker � r,
� r(0l(� l(v ))) = �0l(�� r � � l(v )) = �0l(m ) :



62 K. KONIECZNA, P. URBA�NSKIIt follows, that the pair (v ; 0l(� l(v ))) is in the domain of mr. Now, we can de�netwo mappings {C ; {F : ker � r ! ker � rby the formulae {F (v ) = 0l(� l(v )) ; m = (�� r � � l)(v ) ;{C(v ) = v �r 0l(� l(v )) :

(2)It is evident that {2F = {F , {F{C = 0, {C + {F = id and{2C(v ) = (v �r 0l(� l(v ))) �r 0l(� l(v �r 0l(� l(v ))))= (v �r 0l(� l(v ))) �r 0r(m ) = v �r 0l(� l(v ))= {C(v ) :It follows that {F ; {C are projectors, which de�ne a splitting of ker � r . We havethat {C(v ) 2 ker � r and
� l({C(v )) = � l(v ) � � l(0l(� l(v ))) = �0l(m ) ;and, consequently, {C(v ) 2 C.It is obvious that, for each m 2 M , the intersection of �bers over m of 0l(F ) andC is trival and equal to f0r(m )g. Since the image of {F is canonically isomorphicto F, we conclude, �nally, that ker � r is canonically isomorphic to F�M C.(2) From (1) we have that ker � r can be identi�ed (as a manifold) with F �M C .With this identi�cation � l is the canonical projection on F and the zero section 0lis given by 0l: F ! F �M C : f 7! (f ; 0) :The addition ml de�nes a vector bundle morphismml:Kr �F Kr � ker � r �F ker � r = F�C �C! F�C � Kr ;hence(f ; k ) +l (f ; k

0) = ml((f ; k ; k

0)) = ml((f ; 0; 0) +r (0; k ; k

0))= (f ; 0) +r (0; k + k

0) = (f ; k + k

0) :(3,4) The proof is analogous. �The following two propositions will be useful in the next section.



DOUBLE VECTOR BUNDLES AND DUALITY 63Proposition 4. Let v ; w 2 K and let
� r(v ) = � r(w ) = e 2 E ;

� l(v ) = � l(w ) = f 2 F :There exists k 2 C such that � (k ) = �� l(e ) = �� r(f ) and, using the identi�cations ofProposition 3,
v = w +r (e; k );

v = w +l (f ; k ) :Proof. We have � l(v �r w ) = f � f = 0 and � r(v �l w ) = e � e = 0. It followsfrom Proposition 3 that there exist k ; k

0 2 C such that
v �r w = (e; k ); v �l w = (f ; k

0) :We show that k = k

0. Indeed, since (v ; w ) 2 K �E K and(v ; w ) = (v �l w ; w �l v ) +l (w ; v ) ;we have (linearity of mr)
v �r w = ((v �l w )�r (w �l v )) +l (w �r v ) :Hence (Proposition 3)(e; k ) = ((f ; k

0)�r (f ; �k

0)) +l (e; k ) = (0; 2k

0) +l (e; �k )and (0; 2k

0) = (e; k )�l (e; �k ) = (0; 2k ) : �Proposition 5. Let v ; v

0
; w ; w

0 2 K be such that
� r(v ) = � r(w ) = e 2 E ;

� r(v

0) = � r(w

0) = e

0 2 E ;

� l(v ) = � l(w ) = � l(v

0) = � l(w

0) = f 2 F ;

v +l v

0 = w +l w

0
:Then

v �r w = (e; k ) 2 ker � l ;

v

0 �r w

0 = (e

0
; �k ) 2 ker � l :Proof. Since v �r w 2 ker � l and v

0 �r w

0 2 ker � l, there exist k ; k

0 2 C such that
v �r w = (e; k ); v

0 �r w

0 = (e

0
; k

0) :From Proposition 4 we have also
v �l w = (f ; k ); v

0 �l w

0 = (f ; k

0) :The equality v +l v

0 = w +l w

0 implies(f ; k ) = v �l w = w

0 �l v

0 = (f ; �k

0)and k

0 = �k . �



64 K. KONIECZNA, P. URBA�NSKILocal coordinates. Let (x

i)ni=1 be a coordinate system on M . In the bundlesE; F, we introduce coordinate systems ((x

i)ni=1 ; (e

a)nEa=1) and ((x

i)ni=1 ; (f

A)nFA=1).We denote also by x

i
; e

a
; f

A their pull-backs to the coordinates on K . It fol-lows from Proposition 4 that we can introduce coordinates (c

�)nC�=1 such that(x

i
; e

a
; f

A
; c

�) is a local coordinate system on K and
c

�(v +r w ) = c

�(v ) + c

�(w ),
c

�(v +l w ) = c

�(v ) + c

�(w ),
c

� � 0r = 0,
c

� � 0l = 0.It follows that (x

i
; c

�) is a vector bundle coordinate system in C. The operationof addition +r is characterized by the following equalities
c

�(v +r w ) = c

�(v ) + c

�(w ) ;

f

A(v +r w ) = f

A(v ) + f

A(w ) ;

e

a(v +r w ) = e

a(v ) = e

a(w ) ;

x

i(v +r w ) = x

i(v ) = x

i(w ) :The operation of addition +l is characterized by
c

�(v +l w ) = c

�(v ) + c

�(w ) ;

f

A(v +l w ) = f

A(v ) = f

A(w ) ;

e

a(v +l w ) = e

a(v ) + e

a(w ) ;

x

i(v +l w ) = x

i(v ) = x

i(w ) :Examples.1. Let E = (E ; �� l ; M ), F = (F ; �� r ; M ), C = (C ; � ; M ) be vector bundles and let
K = F �M C �M E . By K(F; C; E) we denote a double vector bundle representedby the diagram(3) K



�� l NNNNP� r

F NNNNP�� r E



��� l
Mwhere � r: K = F �M C �M E ! E and � l: K = F �M C �M E ! F are thecanonical projections. The right and left vector bundle structures are obvious:(f ; k ; e ) +r (f

0
; k

0
; e ) = (f + f

0
; k + k

0
; e ) ;(f ; k ; e ) +l (f ; k

0
; e

0) = (f ; k + k

0
; e + e

0) :



DOUBLE VECTOR BUNDLES AND DUALITY 65The core of K(F; C; E) can be identi�ed with C.2. Let E = (E ; � ; M ) be a vector bundle. The tangent manifold TE has twovector bundle structures ([5]):the canonical vector bundle structure of the tangent bundle on thecanonical �bration � E :TE ! E ,the tangent vector bundle structure on the tangent �bration T� :TE !TM .It is easy task to verify that the diagram(4) TE K



�T�

NNNNP� ETM 44446� M Ehhhhk�

Mrepresents a double vector bundle. We denote this double vector bundle by TE.The core consists of vertical tangent vectors at the zero section of E. Thus, it canbe identi�ed, in an obvious way, with E.3. Let K be a double vector bundle represented by the diagram(5) K



�� l NNNNP� r
F NNNNP�� r E



��� l

Mthen also the diagram(6) K



�� r NNNNP� l
E NNNNP�� l F



��� r

Mrepresents a double vector bundle. We denote it by J(K).



66 K. KONIECZNA, P. URBA�NSKIIn examples (1) and (2), we identi�ed canonically the core with a certain vectorbundle. We shall write in the following a diagram(7) K



�� l NNNNP� r
F NNNNP�� r C

uyu�

E



��� l
Minstead of the diagram (1), if we identify the core of (1) with the vector bundle C.In the case of K = TE we write then the diagram(8) TE



�T�

NNNNP� ETM NNNNP� M E

uyu�

E



��

M3. Morphisms of double vector bundlesLet K = (Kr ; Kl ; E; F) and K0 = (K0r ; K0l ; E0 ; F0) be double vector bundleswith cores C and C0 respectively. A morphism �:K ! K0 of double vectorbundles is a family � = (�; �r ; �l ;

��) of mappings�: K ! K

0
; �r: E ! E

0
; �l: F ! F

0
; and ��: M ! M

0such that �r = (�; �r); �l = (�; �l), ��r = (�r ;

��), and ��l = (�l ;

��) aremorphisms of vector bundles�r :Kr !K0r ; �l :Kl !K0l ;

��r :E! E0 ; and ��l:F! F0 :We have thus a commutative diagram(9) KAAAAAD� l '''')� r w�
K

0AAAAAD�

0l '''')�

0r
ENNNNNQ �� l w�r

E

0NNNNNQ�� 0lF '''')�� r w�l
F

0'''')�� 0r
M w��

M

0



DOUBLE VECTOR BUNDLES AND DUALITY 67Proposition 6. Let �:K!K0 be a morphism of double vector bundles. Then(1) �(ker � r) � ker �

0r ,(2) �(ker � l) � ker �

0l ,(3) �(C ) � C

0.Proof. Since ��r :E! E0 is a morphismof vector bundles, it maps the zero sectionof E into the zero section of E0. It follows that �(ker � r) � ker �

0r . Similarly,�(ker � l) � ker �

0l and, consequently, �(C ) � C

0. �We denote by �c = (�c ;

��) the morphism of vector bundles C and C0 inducedby �.Let (x

i
; e

a
; f

A
; c

�) be an adapted local coordinate system on K and let(�x �i ; �e �a ;

�
f

�A
; �c ��) be an adapted coordinate system in K

0. We have�x �i �� = ��i ;�e �a �� = ��ab e

b
;�

f

�A �� = � �AB f

B
;�c �� �� = ���� c

� +���aA e

a
f

A
;

(10)where ��i ; ��ab , � �AB ; ���� ; ���aA are functions on the domain of (x

i) in M .Examples.1. Let E = (E ; � ; M ) and E0 = (E

0
; �

0
; M

0) be vector bundles and let� = (�;

��)be a vector bundle morphism �:E! E0 :The quadruple T� = (T�; �; T��;

��) de�nes a morphism of double vector bun-dles T�:TE! TE0and, with the identi�cation of cores as in the diagram (8), we have �c:E ! E0,�c = �.2. An essential role in the Lagrangian formulation of the classical mechani-cal system is played by the isomorphism � M , which relates TTM with J(TTM )([5]). Here, TM is the vector bundle of tangent vectors. All three vector bundlemorphisms ��r ;

��l ; �c:TM ! TM are indentities.3. Let K = K(F; C; E) and K0 = K(F0 ; C0
; E0). If � = (�; �r ; �l ;

��) is amorphism of double vector bundles,(11) �:K!K0
;then �(f ; c; e ) = (�l(f ); �c(c ) + 	(f ; e ); �r(e )) ;where the mapping 	:F�M E! C0is bilinear.



68 K. KONIECZNA, P. URBA�NSKI4.The right dualLet K�r be the vector bundle dual to Kr. We denote by K

�r the total �berbundle space and by � l the projection
� l: K

�r ! E :Let a 2 K

�r and k 2 C satisfy � (k ) = �� l(� l(a )). We can evaluate a on a vector(� l(a ); k ) of ker � l. We de�ne a mapping � r: K

�r ! C

� by the formula(12) hk ; � r(a )i = h(� l(a ); k ); a i :It follows directly from this construction thatProposition 7. The mapping � r: K

�r ! C

� is a morphism of vector bundles
� r:K�r ! C� :We de�ne a relation

P r(ml): K

�r � K

�r ! K

�rin the following way: c 2 P r(ml)(a; b ) if(1) � l(c ) = � l(a ) + � l(b ),(2) hw ; c i = hv ; a i + hv

0
; b i for each w ; v ; v

0 2 K such that � r(w ) = � l(c ),
� r(v ) = � l(a ), � r(v

0) = � l(b ), and w = ml(v ; v

0).Proposition 8. P (ml) is univalent and, if c = P (ml)(a; b ), then � r(a ) = � r(b ) =
� r(c ).Proof. P (ml) is univalent, because for each w we can �nd v ; v

0 such thatml(v ; v

0) = w and, consequently, c is completely determined by the conditionhw ; c i = hv ; c i+ hv

0
; c i :Let k 2 C and c = P (ml)(a; b ). From the de�nition of � r we have, usingidenti�cations of Proposition 3,hk ; � r(a )i � hk ; � r(b )i = h(� l(a ); k ); a i+ h(� l(b ); �k ); b i == h((� l(a ); k ) +l (� l(b ); �k )); c i = h(� l(a ) + � l(b ); 0); c i = 0 :It follows that � r(a ) = � r(b ). Moreover,hk ; � r(c )i = h(� l(c ); k ); c i = h((� l(a ); k ) +l (� l(b ); 0)); c i == h(� l(a ); k ); a i+ h(� l(b ); 0); b i = h(� l(a ); k ); a i = hk ; � r(a )i :Hence, � r(a ) = � r(c ). �



DOUBLE VECTOR BUNDLES AND DUALITY 69Proposition 9. A pair (a; b ) 2 K

�r � K

�r is in the domain of P (ml) if and onlyif � l(a ) = � l(b ).Proof. It is enough to show that if � l(a ) = � l(b ) then there exists c 2 K

�r suchthat c = P (ml)(a; b ).Let � r(a ) = � r(b ). We de�ne c 2 �

�1l (� l(a ) + � l(b )) by(13) hw ; c i = hv ; a i + hv

0
; b iwhere w ; v ; v

0 2 K are such that � r(v ) = � l(a ) = e , � r(v

0) = � l(b ) = e

0 and
w = ml(v ; v

0). Let w = ml(u; u

0) be another representation of w , such that
� r(u ) = e; � r(u

0) = e

0. We have also � l(u ) = � l(u

0) = � l(w ). It follows fromProposition 5 that
u �r v = (e; k ) 2 ker � l ;

u

0 �r v

0 = (e

0
; �k ) 2 ker � land, consequently,hu; a i+hu

0
; b i = hu �r v ; a i+hu

0�r v

0
; b i+hv ; a i+hv

0
; b i = h(e; k ); a i+h(e

0
; �k ); b i++ hu; a i+ hu

0
; b i = hk ; � r(a )i � hk ; � r(b )i+ hu; a i+ hu

0
; b i = hu; a i+ hu

0
; b i :This proves that c is a well de�ned function on (� r)�1(e + e

0). Now, we haveto show that this function is linear. Let be w = w 1 +r w 2 and w 1 = u +l u

0,
w 2 = v +l v

0. Since +r is linear on Kl �E Kl, we have(u +l u

0) +r (v +l v

0) = (u +r v ) +l (u

0 +r v

0)andhw 1 +r w 2 ; c i = hu +r v ; a i + hu

0 +r v

0
; b i= hu; a i+ hv ; b i+ hu

0
; b i+ hv

0
; b i = hw 1 ; c i+ hw 2 ; c i :The function c is additive and, consequently, linear. �We have then the operation P (ml) in �bers of � r. In the following, we shall usealso +r instead of P (ml) to denote this operation. The multiplication �r is de�nedby the formula hr �l v ; r �r a i = r hv ; a i :We show in the following proposition that with these operations K

�r becomes avector bundle over C

�.



70 K. KONIECZNA, P. URBA�NSKIProposition 10. On each �ber of � r the operation P (ml) de�nes the structureof an Abelian group.Proof. Associativity. Let a; b; c 2 K

�r be such that � r(a ) = � r(b ) = � r(c ) andlet u; v ; w 2 K be such that � l(u ) = � l(v ) = � l(w ) and � r(u ) = � l(a ), � r(v ) = � l(b ),
� r(w ) = � l(c ). We havehw +l v +l u; c +r (b +r a )i = hw ; c i+ hv +l u; b +r a i = hw ; c i+ hv ; b i + hu; a i :Commutativity. Obvious.Neutral element. Let us choose an element � 2 C�. Since ker � r, with thevector bundle structure ofKr , is identi�ed with F�MC, we can de�ne an element
e � 2 K

�r by
� l(e �) = �0l(� (� )); h(f ; k ); e �i = hk ; � i :For each a 2 K

�r such that � r(a ) = � and for each w 2 K such that � r(w ) = � l(a ),we havehw ; a +r e �i = hw +l (f ; 0); a +r e �i = hw ; a i+ h(f ; 0); e �i = hw ; a i ;where f = � l(w ).Inverse element. Is equal (�1) �r a . �Local coordinates. Let (x

i
; e

a
; f

A
; c

�) be an adapted coordinate system on Kand let (x

i
; e

a
; p A ; q �) be the adopted coordinate system on the dual bundle K

�r ,i. e., the canonical evaluation is given by the formula(14) hv ; a i =XA p A(a )f

A(v ) +X� q �(a )c

�(v ):We use (x

i
; c

�) as a coordinate system on C and (x

i
; q �) as a coordinate systemon C

�. In these coordinate systems, we have
x i � � r(a ) = x i(a ) ;

q � � � r(a ) = q �(a ) ;

(15)and
x

i(a +r b ) = x

i(a ) = x

i(b ) ;

e

a(a +r b ) = e

a(a ) + e

a(b ) ;

p A(a +r b ) = p A(a ) + p A(b ) ;

q �(a +r b ) = q �(a ) = q �(b ) :

(16)It follows that (K

�r
; � r ; C

�) is a vector bundle. We denote it by K�rr . Thevector bundle (K

�r
; � l ; E ) we denote by K�rl .



DOUBLE VECTOR BUNDLES AND DUALITY 71Theorem 11. The system K�r = (K�rr ; K�rl ; C� ; E) is a double vector bundle.Proof. We have to show that the projection, zero section and the operation ofaddition related to one vector bundle structure is linear with respect to anotherone.Projections. Linearity of � r:K�rl ! C� follows directly from its de�nition.Linearity of the projection � l:K�rr ! E is contained in the de�nition of P (ml).Zero sections. Linearity of 0l:E ! K�rr follows directly from the de�nitionof P (ml). Now, let 0r :C� !K�rl = (Kr)�be the zero section. For � 2 C

�, e � = 0r(� ) is an element of the space dual to
�

�1r (0), de�ned by
� l(e �) = �0l(� (� )); h(f ; k ); e �i = hk ; � i :Hence linearity.Additions. First, we show that +l is a morphism of vector bundles(17) +l:K�rr �E K�rr !K�rr :Let a; b; a

0
; b

0 2 K

�r be such that
� l(a ) = � l(b ) = e; � l(a

0) = � l(b

0) = e

0
; � r(a ) = � r(a

0) ; and � r(b ) = � r(b

0) :Since � l:K�rr ! E is linear, we have
� l(a +r a

0) = � l(b +l b

0) = e + e

0and, consequently, (a +r a

0
; b +r b

0) 2 K�rr �E K�rr . The operation +l is additivewith respect to +r and +r is additive with respect to +l if for each quadruple(a; b; a

0
; b

0) (a +r a

0) +l (b +r b

0) = (a +l b ) +r (a

0 +l b

0) :To show this equality let us take w ; v ; v

0 2 K such that � r(v ) = e , � r(v ) = e

0,
� l(v ) = � l(v

0) and w = v +l v

0. We havehw ; (a +r a

0) +l (b +r b

0)i = hw ; a +r a

0i+ hw ; b +r b

0i= hv ; a i+hv

0
; a

0i+hv ; b i+hv

0
; b

0i = hv ; a +l b i+hv

0
; a

0+l b

0ii = hw ; (a +l b )+r(a

0+l b

0)i :�We identify the kernel ker � r with F �M C and, consequently, the kernel of � lwith C� �M F�. With this identi�cations, we have that(18) h(f ; c ); (c

�
; f

�)i = hf ; f

�i+ hc; c

�i



72 K. KONIECZNA, P. URBA�NSKIand that � r is the canonical projection C� � F� ! C�. It follows that the coreof K�r can be identi�ed with F� and thatker � r = E �F� :Proposition 12. Let a = (e; f

�) 2 ker � r and b 2 K

�r . Then, for v ; w 2 K suchthat � r(v ) = e and w = (e; c ) 2 ker � l ; e = � l(b ), we havehv ; a i =h� l(v ); f

�i ;hw ; b i =hc; � r(b )i :Proof. Let f = � l(v ). We have (f ; 0) 2 F �M C = ker � r , v = (v �l (f ; 0))+l (f ; 0),and a = (e; f

�) = (e; 0)+r (0; f

�). But, from the de�nition of +r in K

�r and from(18), it follows thathv ; a i = h(v �l (f ; 0)) +l (f ; 0); (e; 0) +r (0; f

�)i= h(v �l (f ; 0)); (e; 0)i+ h(f ; 0); (0; f

�)i = hf ; f

�i :The proof of the second equality is analogous. �Now, we can write the diagram for K�r . If K is represented by the diagram(19) K



�� l NNNNP� r
F NNNNP�� r C

uyu�

E



��� l
Mthen the right dual K�r is represented by the diagram(20) K

�rNNNNP� r



�� l
E AAAAC�� r F

�u yu�

C

������ �� r
M



DOUBLE VECTOR BUNDLES AND DUALITY 73The left dual. A construction, similar to that of K�r , can be applied to the leftdual K

�l . As the result, we obtain the structure of a double vector bundle on
K

�l . We denote it by K�l = (K�lr ; K�ll ; F; C�). The core of K�l is E�. There isan obvious identity(21) J(K�l) = (J(K))�r :Examples.1. Let K = K(F; C; E). The right dual can be canonically identi�ed withK(E; F� ; C�) and the left dual with K(C� ; E� ; F).2. If E = (E ; � ; M ) is a vector bundle, then TE is a double vector bundle withthe diagram(22) TE



�T�

NNNNP� ETM NNNNP� M E

uyu�

E



��

MIts right dual (TE)�r is represented by the diagram(23) T� E NNNNPT� �





�� E
E 44446�

T� M

uyu� M E

�hhhhk�

MWe see that the manifold of cotangent vectors to a vector bundle has two com-patible vector bundle structures. The double vector bundle J((TE)�r ), representedby the diagram(24) T� E



�T� �

NNNNP� E
E

�44446�

T� M

u yu� M Ehhhhk �

M



74 K. KONIECZNA, P. URBA�NSKIwill be denoted by T�E. In particular, for E = TM , the diagram (24) assumesthe form(25) T�TM



�T� � M NNNNP� TMT� M '''')
� M T� M

uyu� M TM[[[[̂� M
M3. In order to identify the structure of the left dual of TE let us recall thatthe dual to the vector bundle (TE ; T� ; TM ) can be canonically identi�ed with(TE

�
; T� ; TM ) ([5]). It follows that the left dual to TE is canonically isomorphicto J(TE�) with the diagram(26) TE

�NNNNPT�





�� E�
E

�AAAAC�

E

�uyu�

TM������ M
M5. Dual morphismsLet A = (A; � ; M ) and A0 = (A

0
; �

0
; M

0) be vector bundles and let ' : A ! A

0and ' : M ! M

0 be mappings such that the pair ' = ('; ' ) is a morphism ofvector bundles. The dual morphism '�:A0 ! A is not composed of mappings,but relations, unless it is an isomorphism.In order to avoid the use of relations instead of mappings, we restrict furtherconsiderations to the case of isomorphism only. It follows from the formulae (10)that � is an isomorphism of double vector bundles if and only if ��r ;

��l and ��care isomorphisms of vector bundles.Let �:K!K0 be an isomorphismof double vector bundles, � = (�; �r ; �l ;

��).Consequently, �r = (�; �r) is an isomorphism of vector bundles,�r :Kr !K0r :The dual vector bundle morphism(�r)�: (K0r)� ! (Kr)�



DOUBLE VECTOR BUNDLES AND DUALITY 75is also an isomorphism. Let us denote by ��r the mapping of bundle spaces,��r : K

0�r ! K

�r . We have (�r)� = (��r ; ��1r ) :Proposition 13. ��r de�nes an isomorphism of vector bundles K0�rr and K�rr .Proof. First, we show that ��r respects �brations �

0r and � r. Let a; b 2 K0�rbe such that �

0r(a ) = �

0r(b ). The kernel ker �

0l is, with the right bundle structure,isomorphic to E

0 �M C0 and, with the left bundle structure, it is isomorphic toE0 �M C0. The equality �

0r(a ) = �

0r(b ) means that for k

0 2 C , we have(27) h(�

0l(a ); k

0); a i = h(�

0l(b ); k

0); b iSince � is linear with respect to both, the right and left, vector bundle structures,we have �((e; k )) = �((e; 0)) + �((0; k )) = �c(k )for (e; k ) 2 ker � l. It follows that(28) h(� l(��r (a )); k ); ��r (a )i = h�(���1(a ); k ); a i= h(���1(a ); �c(k )); a i = h(���1(b ); �c(k )); b i = h(� l(��r (b )); k ); ��r (b )iand
� r(��r (a )) = � r(��r(b )) :Linearity of ��r with respect to the right vector bundle structure follows fromhv +l w ; ��r (a +r b )i = h�(v +l w ); a +r b i = h�(v ) +l �(w ); a +r b i= h�(v ); a i+h�(w ); b i = hv ; ��r (a )i+hw ; ��r (b )i = hv +l w ; ��r (a )+r��r (b )i :Corollary 14. We have the following equalities for 	 = ��r�	r = ( ��c)� ;�	l = ( ��r)�1 ;�	c = ( ��l)� :

(29)Proof. ker � r and ker �

0r , with the right vector bundle structures, are isomorphicto F�MC and F0�M 0C0 respectively. The existence of these isomorphisms impliesthat the restriction of � to ker � r is identi�able with ��l� ��c. It follows that, withthese identi�cations, the dual mapping��r : (C0)� �M 0 (F0)� ! (C)� �M (F)�is equal ( ��c)� � ( ��l)�.We have also that ker � l and ker �

0l, with the left vector bundle structure, areisomorphic to (C)� �M (F)� and (C0)��M (F0)� respectively. With these isomor-phisms the restriction of ��r to ker �

0l is identi�able with �	r� �	c. It follows that�	r = ( ��c)�, �	c = ( ��l)�. The third equality in (29) is obvious. �



76 K. KONIECZNA, P. URBA�NSKIExamples.1. Let K = K(F; C; E), K0 = K(F0 ; C0
; E0), and let �:K!K0, with(30) �(f ; c; e ) = (�l(f ); �c(c ) + 	(f ; e ); �r(e )) :Since we identify K�r with K(E; F� ; C�) and (K0)�r with K(E0 ; (F0)� ; (C0)�),then the morphism ��r is identi�ed as a morphism��r :K(E0 ; (F0)� ; (C0)�)!K(E; F� ; C�) :One can easily verify the equality��r = (��rl ; ��rc +	�r ; ��rr ) ;where ��rr (q

0) = ��c (q

0) ;��rl (e

0) = ��1r (e

0) ;��rc (p

0) = ��l (p

0) ;	�r (e

0
; q

0) = 	�(q

0
; ��1r (e

0)) ;

(31)and 	� is the vector bundle mapping dual to 	 with respect to the left argument,i.e., with respect to f 2 F .2.([5]) We have (Section 3) an isomorphism of double vector bundles
� M :TTM ! J(TTM ) :The right dual (� M )�r :TT� M ! T�TMis usually denoted by � M and plays a crucial role in the Lagrangian formulationof the dynamics of mechanical systems.6. Canonical isomorphismsProposition 15. The three double vector bundles(32) (K�r )�l ; (K�l)�r ; and Kare canonically isomorphic.Proof. It follows from the construction in Section 4 that we can identify manifolds(K

�r )�l and K . Also the right vector bundle structures coincide. Let �: K !(K

�r )�l be the canonical di�eomorphism and let # r ; # l be projections in (K�r )�l .For f

� 2 F

� = ker � r \ ker � l, we havehf

�
; # l(�(v ))i = h(� r(v ); f

�); �(v )i = hv ; (e; f

�)i = h� l(v ); f

�i ;



DOUBLE VECTOR BUNDLES AND DUALITY 77hence # l(�(v )) = � l(v ). Equality of the left vector bundle structures follows fromha +r b; �(v ) +l �(w )i = ha; �(v )i + hb; �(w )i = hv ; a i + hw ; b i = hv +l w ; a +r b i :�In the following, we show that there is a canonical isomorphism of double vectorbundles K and ((K�r )�r )�r . Through this section we denote by (� r ; � l), (� r ; � l),(� r ; � l), and (# r ; # l) the right and left projections in K, K�r , (K�r)�r , and((K�r )�r )�r respectively. Identifying vector bundles with their second duals, wehave
� r: (K

�r )�r ! F � l: (K

�r )�r ! C

�
;

# r: ((K

�r )�r )�r ! E # l: ((K

�r)�r )�r ! F :The core of (K�r)�r is E� and the core of ((K�r )�r )�r is (C�)� = C.We de�ne a relation RK � K � ((K

�r )�r)�r in the following way:Let v 2 K ; ' 2 ((K

�r)�r )�r be such that �� l(� r(v )) = �
# l(# r(' )). We say that(v ; ' ) 2 RK if for each a 2 K

�r and � 2 (K

�r )�r such that
� r(v ) = � l(a ); � r(a ) = � l(� ); � r(� ) = # l(' ) ;we have(33) ha; � i = hv ; a i+ h�; ' i :Theorem 16. The relation RK is a mapping which de�nes an isomorphism ofdouble vector bundles.Proof. Let (v ; ' ) 2 RK , e = � r(v ), and f = # l(' ). We show �rst that � r(v ) =

# r(' ) and � l(v ) = # l(' ). For a = (e; f

�) 2 ker � r and � = (f ; e

�) 2 ker � l equality(33) assumes the formha; � i = hf ; f

�i + he; e

�i = hv ; a i+ h�; ' i = h� l(v ); f

�i+ h# r(' ); e

�i ;in view of (18) and Proposition 12. It follows that
e = # r(' ); f = � l(v ) ;since e

� and f

� are arbitrary.In the next step we show that RK restricted to either right or left �ber is alinear relation. Let (v ; ' ); (v

0
; '

0) 2 RK be such that
� r(v ) = � r(v

0) and # r(' ) = # r('

0) :



78 K. KONIECZNA, P. URBA�NSKILet a; � be such that � l(a ) = � r(v ), � r(a ) = � l(� ) and � r(� ) = # l(' +r '

0): Wecan �nd � ; �

0 2 K

�r�r such that � r(� ) = # l(' ), � r(�

0) = # l('

0), and � = � +l �

0.We have then hv ; a i+ hv

0
; a i = hv +r v

0
; a iand, by the de�nition of the right vector bundle structure on (K

�r�r )�r ,h� +l �

0
; ' +r '

0i = h� ; ' i + h�

0
; '

0i :It follows that(34) ha; � i = ha; � +l �

0i = ha; � i+ ha; �

0i= hv ; a i + h� ; ' i + hv

0
; a i+ h�

0
; '

0i = hv +r v

0
; a i+ h�; ' +r '

0i ;and, consequently, (v +r v

0
; ' +r '

0) 2 RK . Similar arguments show that RK isinvariant with respect to the left addition and also with respect to the right andleft multiplications by a number. The dimensions of K and ((K

�r )�r )�r are equal
n + n E + n F + n C . Thus it remains to show that the kernel and cokernel of RKare trivial, and that the domain of RK is the whole K . It will prove that RK isan injective mapping and, consequently, an isomorphism of double vector bundles.Let (v ; ' ) 2 RK and (v

0
; ' ) 2 RK . Since � r(v ) = # r(' ) = � r(v

0) and � l(v ) =
# l(' ) = � l(v

0), we have
v �r v

0 2 ker � l and v �l v

0 2 ker � r :Since we identify ker � l and ker # l with E �M C , we can write
v �r v

0 = (e; k ) and ' �r ' = (e; 0) :Let a 2 K

�r and � 2 K

�r�r be such that
� l(a ) = � r(v �r v

0) = e ;

� r(a ) = � l(� ) ;

� r(� ) = # l(' �r ' ) :It follows that � 2 ker � r = C

� �M E

�. Let � = (k

�
; e

�) in this representation.We have from Proposition 12 thatha; � i = he; e

�i ;hv �r v

0
; a i = hk ; � r(a )i = hk ; � l(� )i = hk ; k

�i ;h�; ' �r ' i = h# r(' �r ' ); e

�i = he; e

�i :It follows that the equalityha; � i = hv �r v

0
; a i+ h�; ' �r ' i



DOUBLE VECTOR BUNDLES AND DUALITY 79assumes the form he; e

�i = hk ; k

�i+ he; e

�i :Hence hk ; k

�i = 0 for each k

� and, consequently, k = 0. The kernel of RK istrivial. Similarly, we prove that the cokernel is trivial.Now, let v 2 K and let � 2 K

�r�r with � r(� ) = � l(v ). We have to show thatthe formula h�; ' i = ha; � i � hv ; a i ;where � l(a ) = � r(v ) and � r(a ) = � l(� ), de�nes an element ' 2 K

�r�r�r . It isenough to prove that the right hand side of this formula does not depend on thechoice of a .Let a; a

0 be such that � l(a ) = � l(a

0) = � r(v ) and � r(a ) = � r(a

0) = � l(� ). Then
a �r a

0 2 ker � l = C

� �M F

�and
a �l a

0 2 ker � r = E �M F

�
:Let a �r a

0 = (k

�
; f

�) and a �l a

0 = (e; f

0�). The linearity of the left vector bundlestructure on K

�r , with respect to the right vector bundle structure implies that(0; f

�) = (k

�
; f

�)�l (k

�
; 0) = (a �r a

0)�l (a

0 �r a

0)= (a �l a

0)�r (a

0 �l a

0) = (e; f

0�)�r (e; 0) = (0; f

0�)and, consequently, f

� = f

0�. We get from Proposition 12ha; � i � hv ; � i � (ha

0
; � i � hv ; �

0i)= ha �r a

0
; � i�hv ; a �l a

0i = h� r(� ); f

�i�h� l(v ); f

�i = h� l(v ); f

�i�h� l(v ); f

�i = 0 :We conclude that ' is well de�ned and, consequently, (v ; ' ) 2 RK .If we replace the right-hand side of (33) by a di�erent combination of hv ; a i andh�; ' i, we obtain another isomorphism. The isomorphism corresponding to hv ; a i�h�; ' i will be denoted by R�K , the isomorphism corresponding to �hv ; a i + h�; ' iwill be denoted by R�K , and the isomorphism corresponding to �hv ; a i � h�; ' iwill be denoted by R=K .Proposition 17.(1) ' = R�K(v ) if and only if ' = RK((�1) �l v ) or equivalently, (�1) �l ' =RK (v ),(2) ' = R�K(v ) if and only if ' = RK ((�1) �r v ) or equivalently, (�1) �r ' =RK (v ),(3) ' = R=K (v ) if and only if (�1) �l ' = RK ((�1) �r v ) or equivalently,(�1) �l ((�1) �r ' ) = RK(v ).



80 K. KONIECZNA, P. URBA�NSKIProof. The proof is an immediate consequence of the equalities(35) �hv ; a i = h(�1) �r v ; a i = hv ; (�1) �l a i ;(36) �h�; ' i = h(�1) �r �; ' i = h�; (�1) �l ' i ;and the fact that RK de�nes an isomorphism of double vector bundles. �In an analogous way we introduce isomorphisms LK ; L�K ; L�K ; L=K of K�l�l�land K .Examples.1. Let K =K(F; C; E). Using the identi�cation K�r = K(E; F� ; C�) and alsothe identi�cations E�� = E, F�� = F, and C�� = C, we getK�r�r = K(C� ; E� ; F)and K�r�r�r =K(F; C; E) :Thus, we have obtained another identi�cation of K and K�r�r�r . With this iden-ti�cation the formula (33) assumes the formh(e; '; 
 ); (
 ; ";

�
f )i = h(f ; c; e ); (e; '; 
 )i+ h(
 ; ";

�
f ); ( �f ; �c; �e )i ;he; " i+ h �f ; ' i = hf ; ' i+ hc; 
 i + h�c; 
 i + h�e ; " i ;

(37)where e; �e 2 E ; f ;

�
f 2 F ; c; �c 2 C ; " 2 E

�
; ' 2 F

�
;  2 C

�. Hence, e = �e ; f =�
f ; c = ��c , and, consequently,(38) RK(f ; c; e ) = (f ; �c; e ) :Analogously, R�K(f ; c; e ) = (f ; c; �e ) ;R�K(f ; c; e ) = (�f ; c; e ) ;R=K(f ; c; e ) = (�f ; �c; �e ) :

(39)2. Let K be the double vector bundle T�E represented by the diagram(40) T� E



�T� �

NNNNP� E
E

�44446�

T� M

uyu� M Ehhhhk �

M



DOUBLE VECTOR BUNDLES AND DUALITY 81Then the �rst, second, and third right duals can be identi�ed with double vectorbundles J(TE ); TE

� and J(T� E ), represented by diagrams(41) TE NNNNPT�





�� E
E NNNNP�

E

uyu�

TM



�� M
M

TE

�



�T�

NNNNP� E�TM AAAAC� M E

�uyu�

E

�������

M

T� E

�NNNNPT� �





�� E�
E

�44446�

T� M

uyu� M Ehhhhk �

MCanonical isomorphisms RK ; R�K ; R�K ; R=K de�ne di�eomorphisms from T� E

�to T� E . These di�eomorphisms are antisymplectomorphisms with respect to thecanonical symplectic structure of the cotangent bundle for RK ; R=K and symplec-tomorphisms for R�K ; R�K .Identi�cation of isomorphisms. Let �:K!K0 be an isomorphism of doublevector bundles. We have��r�r�r : (K0)�r�r�r !K�r�r�r :Using one of the introduced isomorphisms of a double vector bundle and its thirdright dual, we can compare � and its third right dual.Proposition 18. We have the following equality(42) R�1K ���r�r�r � RK0 = ��1 :Proof. Let ' 2 K

�r�r�r , '

0 2 (K

0)�r�r�r , v 2 K , and v

0 2 K

0 be such that(43) ' = ��r�r�r ('

0); ' = RK(v ); '

0 = RK0(v

0) :Then, as in (33), we have ha

0
; �

0i = hv

0
; a

0i+ h�

0
; v iand, for a = ��r (a

0); � = (��r�r )�1(�

0), we have(44) h(��r )�1(a ); ��r�r(� )i = hv

0
; (��r)�1(a )i + h��r�r(� ); '

0i ;(45) h��r�r�l � (��r )�1(a ); � i = h((��r )�1)�l(v

0); a i+ h�; ��r�r�r ('

0)i :



82 K. KONIECZNA, P. URBA�NSKIFrom the formula (33) and from (45), we derive the following identities��r�r�l � (��r )�1(a ) = a;(��r )�1)�l(v

0) = ��1(v

0);��r�r�r('

0) = 'which make the formula (45) equivalent toha; � i = h��1(v

0); a i+ h�; ' i:It follows that RK(��1(v

0)) = ' = RK(v ) :Consequently, ��1(v

0) = v : �Equalities similar to (42) hold for pairs of relations (R�K ; R�K0), (R�K ; R�K0), and(R=K ; R=K0) in place of (RK ; RK0).Remark. In the case of K = K(F; C; E) and K0 = K(F0 ; C0
; E0) we have an-other isomorphisms of K and K�r�r�r , K0 and (K0)�r�r�r (see Example 1 of thissection). In contrast to (42), ��r�r�r does not correspond, with respect to theseisomorphisms, to ��1. 7. Examples and applications7.1. Vector and co-vector �elds on a vector bundle. Let E = (E ; � ; M ) be avector bundle and let X be a vector �eld on E . By eX we denote the correspondingfunction on T� E .Theorem 19. The following three conditions are equivalent.(1) For each function f on E , linear on �bers, the function hX ; df i is linearon �bers.(2) The mapping X : E ! TE is a vector bundle morphism from E to(TE ; T� ; TM ).(3) The function e

X is linear with respect to the right and left vector bundlestructures on T� E .Proof. Let f be a linear function on E and let v ; v

0 2 TE be such that T� (v ) =T� (v

0). We can choose curves 
 ; 


0 on E which represent v ; v

0, respectively, andsatisfy the following condition: � � 
 = � � 


0. The curve 
 + 


0: t 7! 
 (t ) + 


0(t )represents the vector v +l v

0. Since f is linear, we have f � (
 + 


0)(t ) = f � 
 (t ) +
f � 


0(t ) and, consequently,hv +l v

0
; df (e + e

0)i = hv ; df (e )i + hv

0
; df (e

0)i = hv +l v

0
; df (e ) +l df (e

0)i ;



DOUBLE VECTOR BUNDLES AND DUALITY 83i.e.,(46) df (e + e

0) = df (e ) +l df (e

0) :(1 ) 2) First, we have to show that, if � (e ) = � (e

0), then T� (X (e )) =T� (X (e

0)). It is enough to show that for each function g on E , which is con-stant on �bers,(47) hX (e ); d g (e )i = hX (e

0); dg (e

0)i :Let f be a linear function on E and and let g be a function on E , constant on�bers. The function f g is linear on �bers, hence X (f g ) is also linear. Since
X (f g ) = f X (g ) + g X (f )and g X (f ) is linear on �bers, it follows that f X (g ) is linear and, consequently,

X (g ) is constant on �bers and
X (g )(e ) = X (g )(e

0) :Since
X (g )(e ) = hX (e ); d g (e )i ;we get (47).Now, we show that X is linear on �bers. Let � be a covector from T�e+e0 E ,where e + e

0 6= 0. There exists a function F � on E which is linear on �bers andsuch that dF �(e + e

0) = � .We have from (46)hX (e + e

0); dF �(e + e

0)i = X (F �)(e + e

0) = X (F �)(e ) + X (F �)(e

0)= hX (e ); dF �(e )i + hX (e

0); dF �(e

0)i = hX (e ) +l X (e

0); dF �(e + e

0)iThe above calculation gives, for every � ,hX (e + e

0); � i = hX (e ) +l X (e

0); � iand, consequently X (e + e

0) = X (e ) + X (e

0) for e + e

0 6= 0. By the continuityargument, we get the desired equality for all e; e

0.Similar arguments show that hX (�e ) = � �l X (e ).(2) 3) Let � (e ) = � (e

0). Since X is a vector bundle morphism, we have
� (e ) = � (e

0)) T� (X (e )) = T� (X (e

0))and
X (e + e

0) = X (e ) +l X (e

0);

X (�e ) = � �l X (e ):



84 K. KONIECZNA, P. URBA�NSKILet � and � be two covectors on E , � 2 T�e E and � 2 T�e0 E , such that T� � (� ) =T� � (� ). From the de�nition of the vector bundle structure on (T� E ; T� � ; E

�), wehave hX (e + e

0); � +l � i = hX (e ) +l X (e

0); � +l � i = hX (e ); � i + hX (e

0); � iand hX (�p ); � �l � i = h� �l X (e ); � �l � i = � hX (e ); � iThe above calculation shows that X , treated as a function on T� E , is linear withrespect to the vector bundle structure (T� E ; T� � ; E

�). It is obviously linear withrespect to the canonical vector bundle structure on (T� E ; � E ; E ).(3) 1) It follows from (46) that for a linear function fhX (e + e

0); df (e + e

0)i= hX (e ) +l X (e

0); df (e ) +l df (e

0)i = hX (e ); d f (e )i + hX (e

0); df (e

0)i : �We say that a vector �eld X is of degree zero if one of the conditions of thistheorem is satis�ed.Let (X

i
; e

a) be an adapted coordinate system on E . A vector �eld X on E isof degree zero if, in local coordinates,(48) X = X

i @

@ x

i + X

ba e

a @

@ e

b ;where X

i
; X

ia are functions of (x

i) only.Now, let � be a 1-form on E and let e� be the corresponding function on TE .Theorem 20. The following three conditions are equivalent.(1) For each vector �eld X of degree zero, the function hX ; � i is linear on�bers.(2) The mapping � : E ! T� E is a vector bundle morphism from E to(T� E ; T� � ; E

�).(3) The function e� is linear with respect to the right and left vector bundlestructures on TE .Proof.(1 ) 2) Let X be a vertical vector �eld on E , constant on �bers. For everylinear function f on E the vector �eld f X is polynomial of degree 0 (see (48)).The function hf X ; � i is then linear on E and, sincehf X ; � i = f hX ; � i;



DOUBLE VECTOR BUNDLES AND DUALITY 85the function hX ; � i(�) is constant on �bers. It follows that T� � (� (e )) and T� � (� (e

0))are equal if � (e ) = � (e

0) and, consequently, that � is a �ber preserving mappingfrom E to (T� E ; T� � ; E

�). In order to prove the linearity of � on �bers, i.e., that
� (e ) +l � (e

0) = � (e + e

0)and
� �l � (e ) = � (�e ) ;it is enough to prove the �rst equality for e; e

0 such that e + e

0 6= 0.Let e + e

0 6= 0. For every vector v 2 Te+e0 E there exists a vector �eld X ofdegree 0, such that X (e + e

0) = v . We have thenhv ; � (e + e

0)i = hX (e + e

0); � (e + e

0)i= hX (e ); � (e )i + hX (e

0); � (e

0)i = hX (e ) +l X (e

0); � (e ) +l � (e

0)i= hX (e + e

0); � (e ) +l � (e

0)i = hv ; � (e ) +l � (e

0)i :Since it holds for every v in Te+e0 E , we have
� (e + e

0) = � (e ) +l � (e

0) :(2) 3) Let v 2 Te E , w 2 Te0 E , � (e ) = � (e

0) and T� (v ) = T� (w ). We havee
� (v +l w ) = hv +l w ; � (e + e

0)i= hv +l w ; � (e ) +l � (e

0)i = hv ; � (e )i + hw ; � (e

0)i = e� (v ) + e� (w )and h� �l v ; � (�p )i = h� �l v ; � �l � (e )i = � hv ; � (e )i ;i.e., � is a linear function on TE with respect to the tangent vector bundle struc-ture on TE . Linearity with respect to the canonical vector bundle structure on(TE ; � E ; E ) is obvious.(3) 1) Let X be a vector �eld on E of degree 0. It follows from Theorem 19thathX ; � i(e +e

0) = hX (e +e

0); � (e +e

0)i = hX (e )+l X (e

0); � (e +e

0)i = e� (X (e )+l X (e

0))= ^� (X (e )) + ^� (X (e

0)) = hX (e ); � (e )i + hX (e

0); � (e

0)i = hX ; � i(e ) + hX ; � i(e

0)Similarly,hX ; � i(�e ) = hX (�e ); � (�e )i = h� �l X (e ); � (�e )i= � hX (e ); � (e )i = � hX ; � i(e ) : �We say that � is of degree 1 (linear) if one of the equivalent conditions of thetheorem above is satis�ed.In a local coordinate system, a linear 1-form � has the following form(49) � = � ad e

a + � ia e

adx

i
;where � a ; � ia are functions of (x

i) only.



86 K. KONIECZNA, P. URBA�NSKI7.2. Linear Poisson structures. A Poisson structure on a vector bundle Eis called linear if, for every two functions f ; g , linear on �bers of E, the Poissonbracket ff ; g g is also linear on �bers. It follows that for f linear on �bers and g ; g

0constant on �bers the bracket ff ; g g is constant on �bers and fg ; g

0g = 0.Let � be a Poisson bivector �eld on E and let e�:T� E ! TE be the correspondigmapping of vector bundles.Proposition 21. � de�nes a linear Poisson structure on E if and only if e� de�nesa morphism of double vector bundles T�E! TE.Proof. Let � be the bivector �eld of a linear Poisson structure. In the proof ofTheorem 19 we have shown that for a linear function f on E the di�erential df islinear, i.e.,(50) df (e + e

0) = df (e ) +l df (e

0) :The vector �eld e�(df ) is a linear vector �eld because it satis�es the condition(1) from the theorem 19. It means that(51) e�(df (e ) + df (e

0)) = e�(df (e + e

0)) = e�(d f (e )) +l e�(d f (e

0)) :On the other hand, for a function g , constant on �bers, the vector �eld e�(dg ) isvertical and constant on �bers (we identify spaces of vertical vectors at di�erentpoints in a �ber). For every pair of covectors �; � such that � 2 T�e E , � 2 T�e0 Eand they have the same projection on E�, there exist a linear function f anda function g , costant on �bers, such that df (e ) = � and df (e

0) + dg (e

0) = � .Therefore, we have, in view of (51)e�(� +l � ) = e�(df (e ) +l (df (e

0) + dg (e

0))) = e�((d f (e ) +l (df (e

0)) + dg (e + e

0)))= e�(df (e ) +l (df (e

0)) + e�(dg (e

0 + e )) = �e�(df (e )) +l e�(df (e

0))�+ e�(dg (e

0 + e ))= e�(df (e )) +l �e�(df (e

0)) + e�(dg (e

0))� = e�(� ) +l e�(� ) :Now, let the Poisson bivector e� be a morphism of double vector bundles. Itfollows that, for every pair of covectors �; � such that their left projections areequal, we have �(� +l � ) = �(� ) +l �(� ) :Let f ; g be linear on �bers. Consequently, df ; dg are linear one forms. We havethen ff ; g g(e + e

0) = he�(d f (e + e

0)); dg (e + e

0)i= he�(d f (e ) +l df (e

0)); dg (e ) +l dg (e

0)i= he�(d f (e )) +l e�(d f (e

0)); dg (e ) +l dg (e

0)i= he�(d f (e )); d g (e )i + he�(d f (e

0)); dg (e

0)i= ff ; g g(e ) + ff ; g g(e

0) : �



DOUBLE VECTOR BUNDLES AND DUALITY 877.3. Special symplectic manifolds. Let E = (E ; � ; M ) be a vector bundleand let ! be a 2-form on E . By e! we denote the corresponding vector bundlemorphism(52) e! :TE ! T� E :We say that ! is linear with respect to the vector bundle structure E if e! is amorphism of double vector bundles(53) e! :TE! T�E :If ! is linear, then there are three derived vector bundle morphisms:e! r: E ! E ;e! l:TM ! E

�
;e! c: E ! T� M :Of course, e! r = idE and, because e! is skew-symmetric, we have, from (29),e! l = �e! �c :Proposition 22. ! is closed if and only if the pull-back of the canonical sym-plectic form ! M on T� M by e! c is equal ! :(54) ! = e! �c ! M :Proof. Let (x

i
; e

a) be a local coordinate system on E and let (x

i
; e

a
; _x j ; _e b),(x

i
; e

a
; p j ; f b) be adopted coordinate systems on TE , T� E respectively. For a2-form ! on E ,

! = 12 ! ijdx

i ^ dx

j + ! iad x

i ^ de

a + 12 ! abde

a ^ de

b
;we have

p j � e! = ! ij _x

i � ! ja _e a ;

f b � e! = ! ib _x

i + ! ab _e a :The linearity of ! implies, in view of (10),
! ij(x; e ) = ! ija(x )e

a
;

! ia(x; e ) = ! ia(x ) ;

! ab(x; e ) = 0 :



88 K. KONIECZNA, P. URBA�NSKIThe exterior derivative of ! assumes then the form:d! = 12 ! ija;k e

adx

k ^ dx

i ^ dx

j + (12 ! ija + ! ja;i)dx

i ^ dx

j ^ de

a
:Therefore the external derivative d! equals 0 if and only if the following twoconditions are satis�ed:

! ija(x ) = ! ia;j(x )� ! ja;i(x ) ;

! ija;k(x ) + ! jka;i(x ) + ! kia;j(x ) = 0 :

(55)The second condition is an immediate consequence of the �rst one.On the other hand, the mapping e! c is given in the coordinate system, by theformula
p i = �! ia e

a
:Consequently, the pull-back of the canonical symplectic form ! M = dp i ^ dx

i by
! c is given bye! �c ! M = d(�! i e

a) ^ dx

i = ! iadx

i ^ de

a � ! ia;j e

adx

j ^ dx

i
:It follows that ! = e! �c ! M if and only if the condition(56) ! ija(x ) = ! ia;j(x )� ! ja;i(x ) ;which is equivalent to (55), is satis�ed. �If ! is nondegenerate, i.e., if e! is an isomorphism of vector bundles, then alsoe! c is an isomorphism. In that case e! c is a symplectomorphism. Thus, we canconsider the pair (E; ! ) as a special symplectic manifold ([6], [7]).7.4. Vertical lifts and complete lifts. In this section, we present concepts ofvertical and complete lifts of a vector �eld ([9], [1]) in the general framework ofdouble vector bundles.Let K = (Kr ; Kl ; E; F) be a double vector bundle with the core C. Let 
 be asection of the core. Using the double vector bundle structure of K we assign to 
two sections Vr 
 and Vl 
 of � r and � l respectively.From Proposition 3 we have ker � r = F �M C and ker � l = E �M C. SectionsVr 
 and Vl 
 are de�ned by the following formulae:Vl 
 : F ! K : f 7! (f ; 
 (�� r(f ))) 2 ker � r � Kand Vr 
 : E ! K : e 7! (e; 
 (�� l(e ))) 2 ker � l � K :Sections Vr 
 and Vl 
 are called vertical lifts of 
 with respect to the right and leftprojections.



DOUBLE VECTOR BUNDLES AND DUALITY 89Examples.(1) Let K = TE. The core of TE is isomorphic to E We can therefore lift thesection of � to the section of � E and T� . In local coordinate system (x

i
; e

a
; _x

j
; _e b)vertical lifts are given by the fomulaeVr 
 = 


a @

@ e

a ;Vl 
 = _x

j @

@ x

j + 


a @

@ e

a :(2) Let K = T�E. The core we identify with T� M . The right vertical lift of a1-form � is the pull-back of � by the projection � .Now, let X : F ! K be a section of � l. We say that this section is linear if itprojects to a mapping X : M ! E and the pair X = (X ; X ) is a vector bundlemorphism X:F!Kr :In a similar way we de�ne linear sections of � r.Proposition 23. There exist a unique linear section Y of the right vector bundlestructure of K�r such that hX ; Y i = 0Proof. For each point m 2 M the image of �� �1r (m ) under X is a vector subspace of
�

�1r (X (m )). We denote by X

�(m ) the anihilator of this subspace in �

�1l (X (m )) �
K

�r . If n E ; n F ; n C are the dimensions of �bers of E ; F ; C respectively then thedimension of X

�(m ) is equal n C .We show that X

�(m ) projects to the whole �ber of C� (which is of dimen-sion n C). Since the projection � r is linear with respect to the left vector bundlestructure, it is enough to show that � r, restricted to the anihilator X

�(m ), is aninjection.Let a be an element of ker � r \ X

�(m ). We represent a by a pair (e; ' ) 2
E �M F

�, where e = X (m ). Since (e; ' ) is an element of the anihilator X

�(m )then hX (f ); (� (m ); ' )i should be equal to zero for all f . The following calculationshows that, in this case, ' must be zero:0 = hX (f ); (� (m ); ' )i = h� l(X (f )); ' i = hf ; ' i :It follows that X

�(m ) is the image of a section of � r over �

�1c (m ). Collectingthe anihilators of X (�� �1r (m )) point by point in M we get a section Y of � r. Theuniqueness of Y is obvious. �Let (x

i
; e

a
; f

A
; k

�) be a local coordinate system on K and let (x

i
; e

a
; ' A ; � �)be the adopted local coordinate system on K

�r . A section of � l is linear if it is ofthe form
e

a = �

a(x

i)
k

� = X

�B(x

i)f

B
:



90 K. KONIECZNA, P. URBA�NSKIA linear section Y of � r which have the same projection onto section of �� r can bewritten as:
e

a = �

a(x

i) ;

' A = Y

�A (x

i)' � :The condition hX ; Y i = 0 gives
Y

�A (x

i) = �X

�A(x

i) :Of special interest is the case ofK = J(TE). The left projection is the canonicalprojection � E :TE ! E and a section X of this projection is a vector �eld on
E . The right dual to J(TE) we identify with TE� (Example 3 of Section 4)and a section of the right projection is a vector �eld on E

�. Linear sections of
� E ; � E� are vector �elds of degree 0. Proposition 23 establishes the one-to-onecorrespondence between vector �elds of degree 0 on E and vector �elds of degree 0on E

�. In particular, for E = TM , the complete tangent lift dT X of a vector �eldon M is a vector �elds of degree 0 on TM (see [9], [1]). One can easily recognizethe corresponding vector �eld Y on the cotangent bundle T� M as the completecotangent lift of X . In local coordinates, for X = X

i @

@ x

i , we havedT X = X

i @

@ x

i + X

i;j _x

j @

@ _x

iand
Y = X

i @

@ x

i � X

i;j p i @

@ p j :7.5. Linear connections and the dual connections. A connection on avector �bration E is given by the horizontal distribution and can be representedby a section � of the �bration j1(E)! j0(E) = E. The connection is linear if � isa morphism of vector bundles
� :E! j

1(E) ;where j

1(E) is a vector �bration over M .A connection on E de�nes a splitting of the tangent bundle TE into the verticaland horizontal parts. Since the bundle V E of vertical vectors can be identi�ed withthe product E�M E , we can look at the splitting map as an isomorphism of vectorbundles(57) D :TE ! (TM �M E) �M Eover the identity of E .



DOUBLE VECTOR BUNDLES AND DUALITY 91Proposition 24. A mapping D :TE ! (TM �M E)�M E is the splitting relatedto a linear connection if and only if D de�nes a double vector bundle morphism(58) D:TE!K(TM ; E; E) ;such that the corresponding mappings
D r :E ! E ;

D l:TM ! TM ;

D c:E ! E

(59)are identities.Let D be the the splitting of a linear connection on E. The transposed left dualto D de�nes an isomorphism(60) D�:TE� !K(TM ; E� ; E�)and, because of (59) and (45), D

�r ; D

�l ; D

�c are identities. ThusD� is the splittingof a linear connection on E�. We call it the dual connection.Let g :E ! E� be a metric on E (g is a self-adjoint isomorphism of vectorbundles). The splitting D is the splitting of a metric connection if the followingdiagram is commutative(61) TE uTg

wD K(TM ; E; E)u idTM �g � gTE

� wD� K(TM ; E� ; E�)7.6. Symmetric connections. In this section E = TM . We have then thecanonical isomorphism
� M :TTM ! J(TTM ) :We introduce also an isomorphism

� :K(TM ; TM ; TM )! J(K(TM ; TM ; TM ))by
� (v ; w ; u ) = (u; w ; v ) :Proposition 25. A connection D is symmetric (torsion-free) if and only if(62) � �D = J(D) � � M



92 K. KONIECZNA, P. URBA�NSKIi. e., if the following diagram is commutative(63) TTMu� M wD K(TM ; TM ; TM )u �J(TTM ) wJ(D) J(K(TM ; TM ; TM ))Proof. Let (x

i
; _x

j
; x

0k
; _x

0l) be an adopted coordinate system on TTM and let(y

i
; _y

jl ; _y kc ; _y

lr) be a coordinate system on K(TM ; TM ; TM ). We have then
y

i(� � D ) = x

i
;_y

jl (� � D ) = _x

j
;_y

jr(� � D ) = x

0j
;_y

lc(� � D ) = _x

0l + �lij _x

i
x

0j
:

(64)On the other hand,
y

i(J(D ) � � M) = x

i
;_y

jl (J(D ) � � M) = _x

j
;_y

jr(J(D ) � � M) = x

0j
;_y

lc(J(D ) � � M) = _x

0l + �lij _x

j
x

0i
:

(65)The diagram (63) is commutative if and only if �lij = �lji, i. e., if the connectionis symmetric. �In order to obtain conditions for a connection to be symmetric, in terms ofthe dual connection, let us consider �rst a more general commutative diagram ofisomorphisms of double vector bundles.(66) K w�u� K Lu� LJ(K) wJ(�) J(L)The left dual to this diagram is the commutative diagram (see (21))(67) K�l L�lu ��lJ(K�r)u
�

�lK J(L�r )u
�

�lLu J(��r)



DOUBLE VECTOR BUNDLES AND DUALITY 93Using the canonical isomorphisms of K; L and K�r�l ; L�r�l , we obtain(68) K�r = L�K�r (K�r�l�l�l) = L�K�r (K�l�l)and(69) L�r = L�L�r (L�r�l�l�l) = L�L�r (L�l�l) :With these identi�cations, we can replace the diagram (67) by an equivalent one:(70) K�l L�lu ��lJ(K�l�l)u
�

�1K J(L�l�l)u
�

�1Lu J(��l�l)�1or(71) K�lu� K w(��l)�1 L�lu� LJ(K�l�l) J(L�l�l)u J(��l�l)�1where
�

�1K = �

�lK � J(L�K�r ); �

�1L = �

�lL � J(L�L�r ) :In the case of K = TTM and L = K(TM ; TM ; TM ), we have, as in (41),K�l = J(TT� M ); L�l = J(K(TM ; T� M ; T� M )) ;K�r = J(T�TM ); L�r =K(TM ; T� M ; T� M ) ;K�l�l = T�T� M ; L�l�l = K(TM ; T� M ; T� M ) ;

(72)and the canonical evaluation between L�l and L�l�l is given by the formula(73) h(v ; f ; g ); (w ; h; g )i = hv ; h i+ hw ; f i:Moreover, for � K = � M , � L = � , � = D , we have(� K)�l = J(�

�1M ) ; (� L)�l = id ;��l = (J(D�))�1 ; (J(��l�l))�1 = J((J(D�))�l) = (D�)�r :

(74)The commutative diagram (71) is then equivalent to(75) J(TT� M ) wJ(D�)u� K J(K(TM ; T� M ; T� M ))u� LJ(T�T� M ) J(K(TM ; T� M ; T� M ))u (D�)�r



94 K. KONIECZNA, P. URBA�NSKIand(76) TT� M wD�uJ(� K ) K(TM ; T� M ; T� M )uJ(� L)T�T� M K(TM ; T� M ; T� M )u J((D�)�r )The isomorphism L�L�r is given by the formula (39)L�L�r : (v ; f ; g ) 7! (�v ; f ; g )and L�K�r :T�T� M ! J(T�TM ) is a symplectomorphism such that it projects tothe identity on T� M and the core isomorphism is also the identity on T� M . Theisomorphism � M :TT� M ! T�TM is a symplectomorphism between the tangentcanonical symplectic structure on TT� M and the canonical symplectic structureon T�TM which projects to the identity on T� M and the core isomorphism is alsothe identity on T� M ([1], [5]) . It follows that
� = J(� L): (v ; f ; g ) 7! (�v ; f ; g )and that � K is a symplectomorphism such that it projects to the identity on T� Mand the core isomorphism is also the identity on T� M . We conclude that � K isthe canonical symplectic structure on T� M . We get the diagram(77) TT� M wD�u� M K(TM ; T� M ; T� M )u�T�T� M K(TM ; T� M ; T� M )u J((D�)�r )(D�)�1 is completely determined by its values onK(TM ; T� M ; T� M ) � V = f(v ; f ; g ): f = 0gand, consequently, by W = (D�)�1(V ) Of course, (D�)�1(V ) is the horizontaldistribution of D�, and � (V ) = V . Thus, the diagram (76) is commutative if andonly if(78) J((D�)�r ) � � �D�(W ) = � M (W ) :Let X ; Y be vector spaces, T : X ! Y a linear mapping and Z � X a vectorsubspace. We have the equality

T

�((F (Z ))�) = Z

�
:It follows that, since V

� = V ,(79) J((D�)�r )(V ) = W

�and, consequently, the equality (77) is equivalent to
W

� = � (W ) :We have proved the following theorem.Proposition 26. The diagram (78) is commutative (the connection is symmetric)if and only if the horizontal distribution of the dual connection D� is lagrangian.
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