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DOUBLE VECTOR BUNDLES AND DUALITY

KaTARZYNA KONIECZNA AND PAWEL URBANSKI

ABSTRACT. The notions of the dual double vector bundle and the dual double vector
bundle morphism are defined. Theorems on canonical isomorphisms are formulated
and proved. Several examples are given.

1. INTRODUCTION

The notion of a double vector bundle was introduced by Pradines in [3]. The
most important examples of double vector bundles are given by iterated tangent
and cotangent functors applied to a manifold : TT | T*T | TT* | and
T*T* . The double vector bundle structure on TT  makes possible the La-
grangian formulation of the dynamics in classical mechanics ([5]). It appears that
the framework of double vector bundles is very convenient for many important
constructions like linear 1-forms, linear Poisson structures, special symplectic man-
ifolds, linear connections etc.

The paper is organized as follows. In Sections 2 and 3 we present in detail the
definitions of a double vector bundle following Mackenzie [2], and morphisms of
double vector bundles. The tangent TE to a vector bundle E is an example of a
double vector bundle. In Section 4 we show that the bundle dual to a double vector
bundle with respect to the right (or left) vector bundle structure is, in a natural
way, a double vector bundle. In particular, the cotangent functor applied to a
vector bundle E provides the double vector bundle T* . Also the mapping dual
to a morphism of double vector bundles is a morphism of double vector bundles
(Section 5). The main result of the paper is contained in Section 6. We show
that the third right dual to a double vector bundle K is canonically isomorphic
to K. In the case of K = T*E, the third dual can be identified with T*E*. The
isomorphism R : K — K* **r of Theorem 17 gives in this case the canonical
isomorphism of T*E and T*E*. The graph of this isomorphism is a Lagrangian
submanifold of T*( x *)~T* xT* * generated by the pairing between E
and E*.
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With the canonical identifications of K with K*~*~*r and of K’ with K'*"*"*"
the third dual to a double vector bundle morphism &: K — K’ is equal &',

In Section 7 we show that the framework of double vector bundles is suitable for
concepts like linear vector fields and forms, linear Poisson and symplectic struc-
tures, vertical and complete lifts, and linear connections. We discuss in detail
the case of linear connections, compatible with a metric on E, and symmetric
connections on the tangent and cotangent bundles.

The main results of this paper were presented at the conference in Vietri sul
Mare, October 97, and one can find their formulations in the proceedings of this
conference ([8]).

bl

2. DOUBLE VECTOR BUNDLES

Let K be a system (K, K; E F) of vector bundles, where K, = ( r )
Ki=(  JLE=( 7 ),andF=( 7 ) such that the diagram

/ \
NS
1s commutative.

We introduce the following notation:
(1) m,, my, m,, and my will denote the operation of addition in K,, K;, E,
and F respectively.
(2) weuse also 4+, form.( ), + formy( ), and simply + for all
other additions,
(3) 0,, 04, 0,, 0; will denote the zero sections of ,, ;, 7, and 7 respectively.
Let us suppose that the pair ( , ) is a vector bundle morphism K; — E.
It follows that xp is a vector subbundle of K; & K; with ( ; x ;)( xg
)= xu . We denote this subbundle by K; &g K;. Moreover, the addition
m,: Xpg — 1is afiber bundle morphism which projects to m,: Xz —

Definition 1. A double vector bundle K is a system (K, K; E F) of vector
bundles K, = ( r ), K= ( ;1 L,E=( 7 Jand F=( . )such
that the diagram (1) is commutative and the following conditions are satisfied:
(1) pairs (¢ 7), ( » ) are vector bundle morphisms,
(2) pairs of additions (my; my) and (m, m,) are vector bundle morphisms
K, xr K, - K, and K; xg K; — K; respectively,
(3) zero sections 0,: E = K;, 0;:F = K, are vector bundle morphisms.

In the following we use the diagram (1) to represent the double vector bundle
K.
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Proposition 2. The vector bundle structures of K, and K; coincide on the in-
tersection  of ker ; and ker .

Proof. Since , and ; are linear in fibers it follows that for each € | we have
OToOl( )E Olo()T( )E

Let us denote 0,( ) =0,00;( ),0( )=0;00,( ). Since m;:K; xr K; = K,
1s a vector bundle morphism, we have

It follows that 0,( ) is a neutral element of my, i.e, 0; = 0,. For "€ such
that 3( +( )= 73( (') = , we have
( D=0:0) D+ 00 ))=(0( ) Ve ( 0l )
and, consequently,
m( =m0 )+ m(0( ) )= + O
Thus, we have a vector bundle C = ( ), where = 70 ,=",0 ;. This

vector bundle 1s called the core of K.

Proposition 3.

(1) ker , with the vector bundle structure induced from K, is canonically
isomorphic to the Whitney sum F @y C.

(2) ker , with the vector bundle structure induced from K; is canonically
isomorphic to the vector bundle  x3r C, i.e., to the pull-back of C by
the projection ..

(3) ker ; with the vector bundle structure induced from K; is canonically
isomorphic to the Whitney sum E @ C.

(4) ker ; with the vector bundle structure induced from K, is canonically
isomorphic to the vector bundle  xzr C, ie., to the pull-back of C by
the projection 7.

Proof.
(1) Since the zero section 0; is a vector bundle morphism

0;: F— Kr
its image 0;( ) is a vector subbundle of K,, contained in ker , and isomorphic

to F.
Let €ker ,andlet = 70 ()= "0 (). Wehave ,( ) =0, and, since

€ ker .,
P00 ) =0i(ro () =0u( )
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It follows, that the pair ( 0;( ;( ))) is in the domain of m,. Now, we can define
two mappings
9 97 ker , — ker ,

by the formulae

(2) T2 ) =0 () = (o ()
TG )= —0( ()

It is evident that €% = €5, 9. =0, 9~ + 9 = and

) =0 =00 ) = 01 = 0 o[ )
=( =0 )= 0:( )= = 0(:())

=9c0)

It follows that § 9 are projectors, which define a splitting of ker ,. We have
that §~( ) € ker , and

e ) = 0() = (0 2( ) =0u( )

and, consequently, §~( ) € C.

It is obvious that, foreach € | the intersection of fibers over  of 0;( ) and
C is trival and equal to {0,( )}. Since the image of § is canonically isomorphic
to F, we conclude, finally, that ker . is canonically isomorphic to F ;7 C.

(2) From (1) we have that ker , can be identified (as a manifold) with ~ x s
With this identification ; is the canonical projection on  and the zero section 0;
is given by

0;: — XM 1 = ( 0)

The addition m; defines a vector bundle morphism

m:K, xp K, Dker , xpker , =Z=FCadC —->FaCCK,

(3,4) The proof is analogous. O

The following two propositions will be useful in the next section.
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Proposition 4. Let € and let
)= =
() =10)

€
€

63

There exists € such that ()= 7( )= +( ) and, using the identifications of

Proposition 3,

= ()
= +( )
Proof. We have ;( — )= — =0and ,( — )= — = 0. It follows
from Proposition 3 that there exist "€  such that
- =) = =
We show that = 7. Indeed, since ( )€ xg and
( )=C= =)+l )

we have (linearity of m,)

and
029=( )=( —)=02)
Proposition 5. Let ' "€  be such that
H()=20)= €
(=)= e
(=)= )= )= €
+ =+
Then

- =( )€Eker
', ':('—)Ekerl

Proof. Since —, €ker ;and '—, '€ ker ,, there exist "e
L= = =)

From Proposition 4 we have also
- =) = '=0)

The equality +; = +; ' implies

and = — .

such that



64 K. KONIECZNA, P. URBANSKI

Local coordinates. Let ( /)7, be a coordinate system on . In the bundles

E F, we introduce coordinate systems (( ©)7_; ( “)2Z;) and (( )7y ( 4)45,).

We denote also by * ¢ 4 their pull-backs to the coordinates on . It fol-
lows from Proposition 4 that we can introduce coordinates ( *)2<, such that

a=1
(% @ A 9 isalocal coordinate system on  and

)= 00+ 20,
)= 0+ 20)
“00, =0,
“00; =0.

It follows that ( ¢ @) is a vector bundle coordinate system in C. The operation
of addition +, is characterized by the following equalities

Q

( +7‘

.
+
3
I
.

4 )= "= ")

o )=0)+ ()

)= 0= 40)
4 )="0)+ ()
()= )= ()
Examples.
l.Let E=( 7 ),F T ), C=( ) be vector bundles and let

= (
= xm xm . ByK(F C E) we denote a double vector bundle represented

by the diagram
\ /

where ,: = XM XM = and ;1 = XM XM = are the
canonical projections. The right and left vector bundle structures are obvious:

( )+ (0 )=+ + )
( )+ " )= + " +)
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The core of K(F C E) can be identified with C.
2. Let E = ( ) be a vector bundle. The tangent manifold T  has two
vector bundle structures ([5]):

the canonical vector bundle structure of the tangent bundle on the
canonical fibration g: T — |

the tangent vector bundle structure on the tangent fibration T : T —
T

It is easy task to verify that the diagram
/ N

represents a double vector bundle. We denote this double vector bundle by TE.

The core consists of vertical tangent vectors at the zero section of E. Thus, it can

be identified, in an obvious way, with E.
3. Let K be a double vector bundle represented by the diagram

\ /
then also the diagram

/ \

\ /

represents a double vector bundle. We denote it by J(K).
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In examples (1) and (2), we identified canonically the core with a certain vector
bundle. We shall write in the following a diagram

2N
7

instead of the diagram (1), if we identify the core of (1) with the vector bundle C.
In the case of K = TE we write then the diagram

AR
|

3. MORPHISMS OF DOUBLE VECTOR BUNDLES

Let K = (K, K; E F) and K' = (K, K] E' F') be double vector bundles
with cores C and C’ respectively. A morphism ®: K — K’ of double vector
bundles is a family ® = (® &, ®; @) of mappings

(8) T

! !

o = b — o — and & —

such that &, = (® &,) & = (¢ &), &, = (&, &), and &, = (&, @) are
morphisms of vector bundles

®. K, - K. ®,: K, - K| ®, . E—FE and &} F = F

We have thus a commutative diagram

P

(9) o, /

N
/
</
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Proposition 6. Let ®: K — K’ be a morphism of double vector bundles. Then
(1) ®(ker ,) C ker |

r

(2) ®(ker ;) C ker /,
(3) ®( )yc "

Proof. Since ®,:E — E’is a morphism of vector bundles, it maps the zero section
of E into the zero section of E'. Tt follows that ®(ker ,) C ker /. Similarly,

r

®(ker ;) C ker | and, consequently, ®( ) C . d
We denote by ®. = (®. ®) the morphism of vector bundles C and C’ induced
by ®.

Let ( ia A “) be an adapted local coordinate system on and let

(7" 7@ 4 %) be an adapted coordinate system in /. We have
(10) Tod =

o = (I)g b

Ao = @é B

Tod=0F F 405, ¢ 4

where & &7, d4 @3 ®f, are functions on the domain of ( Y in

Examples.
1. Let E = ( yand E' = ( / /') bevector bundles and let ® = (& ®)
be a vector bundle morphism
®:E — E

The quadruple T® = (T® & T® &) defines a morphism of double vector bun-
dles
T®:. TE — TE'

and, with the identification of cores as in the diagram (8), we have ®.:E — E’,
d. = .

2. An essential role in the Lagrangian formulation of the classical mechani-
cal system is played by the isomorphism 7, which relates TT  with J(TT )
([6]). Here, T  is the vector bundle of tangent vectors. All three vector bundle
morphisms ®, & ®.:T — T are indentities.

3. Lt K=K(FCE)and KK = K(FF C'E). If ® = (® & & @) is a

morphism of double vector bundles,
(11) &K -+ K

then
O )=(®u( ) ®()+Y( ) ()

where the mapping
U:FxyE—C

1s bilinear.
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4. THE RIGHT DUAL

Let K*be the vector bundle dual to K,. We denote by *r the total fiber
bundle space and by ; the projection

B o

Let € *rand € satisfy ()= 7( i )). We can evaluate on a vector
( () )ofker ;. Wedefine a mapping ,: * — * by the formula

(12) ¢ (n=0) ) )

It follows directly from this construction that

Proposition 7. The mapping ,: * — * is a morphism of vector bundles
~ K= C*
We define a relation
r(ml) X, > X, — X,
in the following way: € ,(my)( ) if
(1) ()= 0)+ (),
(2) ( Y= )Y+{' ) for each I e such that () = (),
(=0 (=" 0and =m0,
Proposition 8.  (my) is univalent and, if = (my)( ), then ()= ()=
()
Proof. (my) is univalent, because for each we can find " such that
my( )= and, consequently, is completely determined by the condition
( )=C )+ )
Let € and = (my)( ). From the definition of , we have, using

identifications of Proposition 3,

(D=0 =) ) H)+{C() =) )=
=({C() )+ ) =) )=+ () 0) )=0

It follows that ,( )= ,( ). Moreover,
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Proposition 9. A pair ()€ * x *isin the domainof (my) if and only

if ()= ().

Proof. It is enough to show that if ;( )= ;( ) then there exists € *r such
that = (m)( ).
Let ()= (). Wedefine € l_l( 1)+ () by

(13) ¢ =0 )+

where = are such that ()= ()=, ()= ()= ' and
= m( ). Let = my( ') be another representation of , such that
A )= ()= "' Wehavealso (( )= () = (). It follows from

Proposition 5 that

and, consequently,

This proves that is a well defined function on ( ,)7'( + ‘). Now, we have
to show that this function is linear. Let be = {4, sand | = + ',

o= +; ’. Since +, is linear on K; x g K;, we have

(+ N+ (+ D=0+ )"+ )

The function 1s additive and, consequently, linear. a

We have then the operation (my) in fibers of . In the following, we shall use
also +, instead of (my) to denote this operation. The multiplication -, is defined
by the formula

<'l 'r>:< >

We show in the following proposition that with these operations *r becomes a
vector bundle over *.
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Proposition 10. On each fiber of , the operation (my) defines the structure
of an Abelian group.

Proof. Associativity. Let € *r besuch that ()= ()= ,()and
let € besuchthat ;( )= ()= 4 )and ()= (), ()= (),
()= (). We have

( + + +(+ N=( Y+{ + + y=( Y+{( Y+{ )

Commutativity. Obvious.
Neutral element. Let us choose an element € C*. Since ker ,, with the
vector bundle structure of K,., is identified with F @37 C, we can define an element

« € *rby .
(a)=0( ) (€ ) ad=( )
r(

Forcach € *r such that )= andforeach € suchthat .( )= (),

we have
( + a)=C 70 + =0 )+ 0 o)=( )
where = ;( ).
Inverse element. Is equal (—1) - . d

Local coordinates. Let ( ¢ ¢ 4 ) be an adapted coordinate system on
*r

andlet ( © 2 4 ,) be the adopted coordinate system on the dual bundle ,
1. e., the canonical evaluation is given by the formula

(14) (=22 a0 O+ o) ()

A

We use ( * ) as a coordinate system on  and ( ' ) as a coordinate system
on *. In these coordinate systems, we have

(15) io ()= ()

and

(16) i

T

It follows that ( * , *) is a vector bundle. We denote it by K. The
vector bundle ( *r ;) we denote by Kl*r.
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Theorem 11. The system K*» = (K}~ K/ C* E) is a double vector bundle.

Proof. We have to show that the projection, zero section and the operation of
addition related to one vector bundle structure is linear with respect to another
one.

Projections. Linearity of ,: Kl*r — C* follows directly from its definition.
Linearity of the projection ;: K} — E is contained in the definition of (my).

Zero sections. Linearity of 0;: E — K*» follows directly from the definition
of (my). Now, let

0,:C* =K' = (K,)*

be the zero section. For € * = 0,( ) is an element of the space dual to

1(0), defined by

Hence linearity.
Additions. First, we show that +; is a morphism of vector bundles

(17) + K xg K" - K¥

Let ' '€ *r be such that

and, consequently, ( +, ' +, /) € KX xg K. The operation +; is additive
with respect to 4+, and +, is additive with respect to +; if for each quadruple
«C 77

( + /)+l( + /):( +i )+7‘( /+l /)
To show this equality let us take " e such that ()= , ()= 7/,
()= (")and = +4; '. We have

We identify the kernel ker , with F @3y C and, consequently, the kernel of
with C* @y F*. With this identifications, we have that

(18) (C " M= H+C
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and that , is the canonical projection C* @& F* — C*. It follows that the core
of K*r can be identified with F* and that

ker . = E&F*

Proposition 12. Let =( *)&ker ,and € *r. Then, for €  such

that ,( )= and =( )€ker; = (), we have
(=) M
¢ )=C ()
Proof. Let = ;( ). Wehave( 0)€ xpy =ker »,, =( —( 0)+( 0),

and = ( *) =( 0)4,(0 *) But, from the definition of +, in  *r and from
(18), it follows that

()= =)+ 0(0+0
={ =0+ 0O H=C %

The proof of the second equality is analogous. a

Now, we can write the diagram for K*-. If K is represented by the diagram

(19)
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The left dual. A construction, similar to that of K*~, can be applied to the left
dual  *'. As the result, we obtain the structure of a double vector bundle on

*1. We denote it by K* = (KX K" F C*). The core of K* is E*. There is
an obvious identity

(21) JK™) = (J(K))*™

Examples.

1. Let K = K(F C E). The right dual can be canonically identified with
K(E F* C*) and the left dual with K(C* E* F).

2. IfE = ( ) is a vector bundle, then TE is a double vector bundle with
the diagram

(22) T

.
2
(23) T* *

We see that the manifold of cotangent vectors to a vector bundle has two com-
patible vector bundle structures. The double vector bundle J((TE)*r), represented
by the diagram
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will be denoted by T*E. In particular, for E = T | the diagram (24) assumes

the form

N
ol

3. In order to identify the structure of the left dual of TE let us recall that
the dual to the vector bundle (T T T ) can be canonically identified with
(T *T T ) ([5]). It follows that the left dual to TE is canonically isomorphic
to J(TE*) with the diagram

T *
(26) * * T
N
5. DUAL MORPHISMS
Let A = ( yand A’ =( ' ' ') be vector bundles and let : — '
and 70—’ be mappings such that the pair ¢ = ( 7) is a morphism of

vector bundles. The dual morphism ¢*: A’ = A is not composed of mappings,
but relations, unless it is an isomorphism.

In order to avoid the use of relations instead of mappings, we restrict further
considerations to the case of isomorphism only. It follows from the formulae (10)
that @ is an isomorphism of double vector bundles if and only if ®, ®; and ®,
are 1isomorphisms of vector bundles.

Let ®: K — K/’ be an isomorphism of double vector bundles, ® = (& @, ®; ®).
Consequently, ®, = (® ®,) is an isomorphism of vector bundles,

$.. K, - K.
The dual vector bundle morphism
(®,)": (K,

r

)" = (Kp)*
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is also an isomorphism. Let us denote by ®*r the mapping of bundle spaces,
@*r: 7 % We have

(®,)" = (@ &7)

Proposition 13. ®*- defines an isomorphism of vector bundles K’jr and K}r.

Proof. First, we show that ®*  respects fibrations / and ,. Let e K™

r

be such that [( )= /(). The kernel ker / is, with the right bundle structure,
isomorphic to / x3; C' and, with the left bundle structure, it is isomorphic to
E' @ C'. The equality .( ) = /() means that for '€ | we have

r r

(27) (i) D y=Ki0) ) )

Since @ 1s linear with respect to both, the right and left, vector bundle structures,

we have
®(( ) =2(( 0)+2((0 ))=2c()
for () € ker ;. Tt follows that

(28) (( z(@fr( ) ) @™ )>=<<If(<i>_1( ) ) )

and
H(@* () = n(@())
Linearity of ®*r with respect to the right vector bundle structure follows from
(+ %+ =@+ ) + )=(2( )+ () + )
=(@() )H(@( ) y=( e N+( () =(+ ()" ())

Corollary 14. We have the following equalities for ¥ = ®*-

(29) B, = (8.)"
‘i’l = ((i)r)_l
T, = (&))"

Proof. ker , and ker [, with the right vector bundle structures, are isomorphic
to Fy C and F/ @y C' respectively. The existence of these isomorphisms implies
that the restriction of ® to ker , is identifiable with ®; ® ®.. It follows that, with

these identifications, the dual mapping
&% (C)" @y (F))* = (C)* @ (F)*
is equal (®.)* @ (®;)*.

We have also that ker ; and ker |, with the left vector bundle structure, are
isomorphic to (C)* &y (F)* and (C')* @&y (F/)* respectively. With these isomor-
Ehisms Ehe res}rictioq of ®*r to ker ; is identifiable with ¥, @ ®.. It follows that
U, = (®.)*, ¥. = (®;)*. The third equality in (29) is obvious. |
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Examples.
1.Let K=K(F C E), K = K(F' C' E'), and let #: K — K’ with

(30) e ) =(®() D)+ ¥( ) ()

Since we identify K*r with K(E F* C*) and (K')* with K(E' (F')* (C")*),
then the morphism ®*r is identified as a morphism

" K(E (F)* (C)*) - K(E F* C*)
One can easily verify the equality

(I)*r — (q)l*r (I)jr_i_\lj*r (I);kr)

where
(31) () =®X( )
@i () =47 ( )
eI ()= ( )
W) =W a()

and U* is the vector bundle mapping dual to ¥ with respect to the left argument,
i.e., with respect to €
2.([5]) We have (Section 3) an isomorphism of double vector bundles

1T = JTT )

The right dual

(ar)*:TTY =TT
is usually denoted by 37 and plays a crucial role in the Lagrangian formulation
of the dynamics of mechanical systems.

6. CANONICAL ISOMORPHISMS

Proposition 15. The three double vector bundles
(32) (K*)* (K*)* and K

are canonically isomorphic.

Proof. It follows from the construction in Section 4 that we can identify manifolds
( *)* and . Also the right vector bundle structures coincide. Let ®: —
( *r)* be the canonical diffeomorphism and let , ; be projections in (K*r)*t.
For * € *=ker ,Nker ;, we have

(5 e =) Hen=C N=00) ")
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hence (®( )) = (). Equality of the left vector bundle structures follows from

(+ @) N=C N+ 2 N=C )+ )=+ + )

In the following, we show that there is a canonical isomorphism of double vector
bundles K and ((K*r)*r)*r. Through this section we denote by ( , ),( » 1),
(» 1), and ( , ) the right and left projections in K, K*, (K*r)* and
((K*r)*r)*r respectively. Identifying vector bundles with their second duals, we
have

S
S (Sl e
The core of (K*)* is E* and the core of ((K*r)*r)*r is (C*)* = C.

We define a relation Rxg € x (( *7)*)* in the following way:

Let € € (( *r)*)* be such that 3( () = «( ~( )). We say that
() €ERg ifforeach € *rand € ( *r)*r such that

%
%

Theorem 16. The relation Ri is a mapping which defines an isomorphism of
double vector bundles.

Proof. Let ( )€ Rg, = (), and = ;( ). We show first that ,.( ) =
()and ()= 4( ). For =( *)e€ker ,and =( *)€&ker ;equality
(33) assumes the form

( )=C O+ H=C )+ =00 D+

since * and * are arbitrary.

In the next step we show that Ry restricted to either right or left fiber is a
linear relation. Let () (/') € Rk be such that

P()=(and ()= ()
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i Jand ()= 4( + ) We

Let be such that ;( )= (), ()=
=5On = e =

can find "€ **rguch that ()

We have then
)+ =0+ ")
and, by the definition of the right vector bundle structure on (= *r*r)*r,
(+ "+ D=0 )+ )
It follows that

(34) ( )y=( + HY=(C )+ 9
=( )+ )HT)HCT D=0H T )+ w0

and, consequently, ( 4+, 4+, /) € Rx. Similar arguments show that Rg is
invariant with respect to the left addition and also with respect to the right and
left multiplications by a number. The dimensions of ~ and (( *r)*r)*r are equal
+ r+ r+ ¢. Thus it remains to show that the kernel and cokernel of R
are trivial, and that the domain of R 1s the whole . It will prove that Rg is
an injective mapping and, consequently, an isomorphism of double vector bundles.
Let ( )ERgand (' )€ Rk. Since ()= ()= »()and ;( )=
1( )= ("), we have

— 'Eker ; and —; ' Eker ,
Since we identify ker ; and ker ; with x5 , we can write
= ) amd = =(0)

Let € *rand € ** be such that

It follows that € ker , = *xp *. Let = ( * *)in this representation.
We have from Proposition 12 that
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assumes the form

C H=C H+C "
Hence (  *) = 0 for each * and, consequently, = 0. The kernel of Rx is
trivial. Similarly, we prove that the cokernel is trivial.

Now, let € and let € ** with ()= (). We have to show that
the formula
¢ )=C )= )

where ()= ,()and () = (), defines an element € *** Tt is
enough to prove that the right hand side of this formula does not depend on the
choice of

Let "besuch that ;( )= ()= ()and ()= ,(’)= i( ). Then

—r " ker = * XM *
and
— "€ ker = XM *
Let — "=(* ®yand — "= ’*). The linearity of the left vector bundle

structure on  *r with respect to the right vector bundle structure implies that

© H=(*" = ("=~ D=("= )

We conclude that  is well defined and, consequently, () € Rk.

If we replace the right-hand side of (33) by a different combination of { ) and
(), we obtain another isomorphism. The isomorphism corresponding to {  )—
() will be denoted by Rli(, the isomorphism corresponding to —{ Y+ { )
will be denoted by R}, and the isomorphism corresponding to —( ) —( )
will be denoted by R% .

Proposition 17.
(1) Rli(( ) if and only if = Rg((—1) 1 ) or equivalently, (—1) 4 =

Ri( ),
(2) =RE()ifand onlyif =Rg((-1)- ) orequivalently, (1), =
Ri( ),
(3) = R%() if and only if (-1) 4 = Rr((—1) - ) or equivalently,
(=D (=) )=Rx&()
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Proof. The proof is an immediate consequence of the equalities

(35) - == )= (D)
(36) - == )= (=D )
and the fact that R defines an isomorphism of double vector bundles. a

In an analogous way we introduce isomorphisms Lg Eli( CE L7 of Kt
and

Examples.
1. Let K = K(F C E). Using the identification K*» = K(E F* C*) and also
the identifications E** = E, F** = F, and C** = C, we get

K** = K(C* E* F)
and
K*** = K(F C E)

Thus, we have obtained another identification of K and K*-**r With this iden-
tification the formula (33) assumes the form

(37) () n= ) npHC ) 7D

where = € € e e * ¢ * € * Hence, = =
= —7, and, consequently,
(38) Re( )= - )
Analogously,
(39) RE( )=( —)
REC == )
Rx( )= - —)
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Then the first, second, and third right duals can be identified with double vector
bundles J(T ) T * and J(T* ), represented by diagrams

(41)

Canonical 1somorphisms R Rli( R} R% define diffeomorphisms from T* *

to T* . These diffeomorphisms are antisymplectomorphisms with respect to the
canonical symplectic structure of the cotangent bundle for Rx R% and symplec-
tomorphisms for Rli( RE.

Identification of isomorphisms. Let ®: K — K’ be an isomorphism of double
vector bundles. We have

PHrkokr (K Frkrke Ly RrH*

Using one of the introduced isomorphisms of a double vector bundle and its third
right dual, we can compare ® and its third right dual.

Proposition 18. We have the following equality

(42) Ryt o ®*r*r*r o Rper = @71

Proof. Let € *r*¥r /e ( /y*¥o* e and '€/ be such that
(43) St () =Re() = Rio( )

Then, as in (33), we have

and, for = ®* (') = (®**)71( /) we have

(44) (@*)=H() @™ ()= (" (@) )+ (@ () )

(45)  (@%F o (@F)TH( ) ) =(((@") () Y+ eET()
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From the formula (33) and from (45), we derive the following identities

(I)*r*r*l ° ((I)*r)—l( ) —
(@)™ H"()=e7( )
(I)*r*r*r( /) —

which make the formula (45) equivalent to

It follows that

Consequently,
() = O
Equalities similar to (42) hold for pairs of relations (R} RE.), (Rli( Rli(,), and
(R% R%/) in place of (Rx Rg).

Remark. In the case of K = K(F C E) and K’ = K(F/ C' E') we have an-
other isomorphisms of K and K*r**r 'K’ and (K')*r**r (see Example 1 of this
section). In contrast to (42), ®*r*+*r does not correspond, with respect to these
isomorphisms, to 1.

7. EXAMPLES AND APPLICATIONS

7.1. Vector and co-vector fields on a vector bundle. Let E = ( ) be a

vector bundle and let ~ be a vector field on . By "~ we denote the corresponding
function on T*

Theorem 19. The following three conditions are equivalent.

(1) For each function on , linear on fibers, the function { d ) is linear
on fibers.

(2) The mapping : — T is a vector bundle morphism from E to
(T T T ).

(3) The function " is linear with respect to the right and left vector bundle
structures on T*

Proof. Let be a linear function on  and let "€T besuchthat T ()=

T (). We can choose curves "on  which represent ! respectively, and
satisfy the following condition: o = o '. Thecurve + '@ — ()+ /()
represents the vector +; ‘. Since s linear, we have o + )()= o ()+

o /() and, consequently,

—~
g
o
+
=
Il
—~
o
=
+
—~
o
=
Il

(= "d()+d ()
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le.,
(46) d(+)=d()+d()

(1 = 2) First, we have to show that, if () = ('), then T ( ()) =
T ( (). Tt is enough to show that for each function on , which is con-

stant on fibers,

(47) (Odn=C)d)

Let  be a linear function on  and and let be a function on , constant on
fibers. The function is linear on fibers, hence () is also linear. Since

()= O+ ()

and () is linear on fibers, it follows that () is linear and, consequently,
() is constant on fibers and

Since
()O)=C ()d ()
we get (47).
Now, we show that is linear on fibers. Let  be a covector from T*

ete’
where + / # 0. There exists a function , on  which is linear on fibers and

such that d ,( + ) =
We have from (46)

((+9du+N= (D(+)= DO+
=( O d N+ () d Wl )

The above calculation gives, for every |

((+D)=C0O+ ()

(
(

I
-
—_

and, consequently ( + ‘)= ()4 (') for 4+ ' # 0. By the continuity
argument, we get the desired equality for all .
Similar arguments show that { ( )= 4 ().

(2=3)Let ()= ('). Since is a vector bundle morphism, we have
O=(N=TC0)=T(")

and
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Let and be two covectorson , €T and €TY | suchthat T* ()=
T* (). From the definition of the vector bundle structure on (T* T* ), we
have

and

CC) a=Ca () )= (0))
The above calculation shows that |, treated as a function on T* | is linear with
respect to the vector bundle structure (T* T* *). Tt is obviously linear with
respect to the canonical vector bundle structure on (T* E )

(3 = 1) Tt follows from (46) that for a linear function

We say that a vector field  is of degree zero if one of the conditions of this
theorem is satisfied.

Let ( * %) be an adapted coordinate system on . A vector field on is
of degree zero if, in local coordinates,

_ 1 b a
(48) = -+ .

where ¢ I are functions of ( ?) only.

Now, let be a 1-form on  and let " be the corresponding function on T

Theorem 20. The following three conditions are equivalent.

(1) For each vector field  of degree zero, the function ( ) is linear on
fibers.
(2) The mapping : — T* is a vector bundle morphism from E to

(3) The function " is linear with respect to the right and left vector bundle
structures on T

Proof.

(1 = 2) Let be a vertical vector field on | constant on fibers. For every
linear function on  the vector field is polynomial of degree 0 (see (48)).
The function ( ) is then linear on  and, since
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the function ( )(+) is constant on fibers. It follows that T* ( ( ))and T* ( ( '))
are equal if () = (') and, consequently, that is a fiber preserving mapping
from E to (T* T* *). In order to prove the linearity of on fibers, i.e., that

O+ (D= (+")

and

v ()= ()
it is enough to prove the first equality for ~ / such that + ' #0.

Let + ' # 0. For every vector € Teyer there exists a vector field  of
degree 0, such that ( + ‘)= . We have then

( (+D=CC+" (+7)
= OND+C ) (N=C O+ () O+ ()
=((+) O+ (N=C O+ ()

Since it holds for every in T.ies , we have

(+ 0= 0O+ ()
2=3)Let €T, , €Te , ()= (andT ()=T ( ). We have

(+ )=(+ (+
=(+ O+ (N=C ( N+ (H= )+ ()

and
(v CNn=Ca (= (n

i.e., s a linear function on T  with respect to the tangent vector bundle struc-
ture on T . Linearity with respect to the canonical vector bundle structure on
(T g ) isobvious.

(3= 1) Let  be a vector field on  of degree 0. Tt follows from Theorem 19
that

Similarly,

Cat)=CcC) Cn=Ca ) CD

We say that is of degree 1 (linear) if one of the equivalent conditions of the
theorem above is satisfied.
In a local coordinate system, a linear 1-form has the following form

(49) = od “+ 4o %d’

where , 44 are functions of ( ) only.
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7.2. Linear Poisson structures. A Poisson structure on a vector bundle E
is called linear if, for every two functions , linear on fibers of E, the Poisson
bracket {  } is also linear on fibers. It follows that for linear on fibers and  ’
constant on fibers the bracket {  } is constant on fibers and { '} = 0.

Let A be a Poisson bivector field on E and let A: T* — T be the correspondig
mapping of vector bundles.

Proposition 21. A defines a linear Poisson structure on E if and only if A defines
a morphism of double vector bundles T*E — TE.

Proof. Let A be the bivector field of a linear Poisson structure. In the proof of
Theorem 19 we have shown that for a linear function on  the differential d 1s
linear, 1.e.,

(50) d(+)=d()+d ()

The vector field K(d ) is a linear vector field because it satisfies the condition
(1) from the theorem 19. It means that

(51) Kd ()+d () =Ad ( + ) =Ad () +Ad (")

On the other hand, for a function |, constant on fibers, the vector field K(d ) is
vertical and constant on fibers (we identify spaces of vertical vectors at different

points in a fiber). For every pair of covectors such that e TX | €T
and they have the same projection on E*, there exist a linear function  and
a function , costant on fibers, such that d () = andd (/) 4+d (/) =

Therefore, we have, in view of (51)

R+ =R O+ (D+d (=R )+l (D +d (+ )
=R )+ (N+AA "+ )= (R () +Ad () +Ed ("+ )

=R () + (A (Y+R () =A)+A()

Now, let the Poisson bivector A be a morphism of double vector bundles. It
follows that, for every pair of covectors such that their left projections are
equal, we have

AC + ) =A0)+AC)

Let be linear on fibers. Consequently, d d are linear one forms. We have
then

(
=A@ () md (Dd()d ()
= (A )+ A () d () +d ()
=A@ () d (O)+@AE (D) d ()
)
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7.3. Special symplectic manifolds. Let E = ( ) be a vector bundle
and let  be a 2-form on . By 7 we denote the corresponding vector bundle
morphism

(52) T ST

We say that  is linear with respect to the vector bundle structure E if 7 is a
morphism of double vector bundles

(53) “:TE - T*E

If is linear, then there are three derived vector bundle morphisms:

T =
T — *

e —TF

Of course, 7, = idg and, because ~ is skew-symmetric, we have, from (29),

Proposition 22.  is closed if and only if the pull-back of the canonical sym-
plectic form 3 on T* by 7. is equal

(54) ="F u

Proof. Let (  9) be a local coordinate system on  and let ( ¢ @ "7 %)
(* * ; ) be adopted coordinate systems on T , T* respectively. For a
2-form on

1 . . . 1
=5 yd "Ad 7+ jud TAd 4 ad “Ad°
we have
jo = it gt
po = '+

The linearity of implies, in view of (10),
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The exterior derivative of assumes then the form:

1 : . 1 : )
d :5 ijak adk/\dl/\d]—l—(i ija T jayi)dl/\d]/\da
Therefore the external derivative equals 0 if and only if the following two

conditions are satisfied:

(55) ijal )= iaj( )= jail )
ijak( )+ jkai( )+ kiai( ) =0

The second condition is an immediate consequence of the first one.
On the other hand, the mapping ~ . is given in the coordinate system, by the

formula
i 2 a

Consequently, the pull-back of the canonical symplectic form 3 =d ; Ad ? by
¢ 1s given by

~2< M:d(_ia)/\di: mdi/\da_ ia aq j/\di

It follows that = "% 4 if and only if the condition
(56) ija )= iai( )= jail )
which is equivalent to (55), is satisfied. O

If  is nondegenerate, i.e., if 7 is an isomorphism of vector bundles, then also
. is an isomorphism. In that case ~. is a symplectomorphism. Thus, we can
consider the pair (E ) as a special symplectic manifold ([6], [7]).

7.4. Vertical lifts and complete lifts. In this section, we present concepts of
vertical and complete lifts of a vector field ([9], [1]) in the general framework of
double vector bundles.

Let K = (K, K; E F) be a double vector bundle with the core C. Let  be a
section of the core. Using the double vector bundle structure of K we assign to
two sections V,, and V; of . and | respectively.

From Proposition 3 we have ker . = X3 C and ker ; = x5 C. Sections
V, and V; are defined by the following formulae:

Vie = ¢ = ( (+())Eker ,C

and
Vet = ¢+ = (0 (1()) €ker ; C

Sections V, and V; are called vertical lifts of with respect to the right and left
projections.
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Examples.

(1) Let K = TE. The core of TE is isomorphic to E We can therefore lift the
section of to the section of g and T . In local coordinate system ( ¢ ¢ "7 %)
vertical lifts are given by the fomulae

V, = ¢

a

Vi = 'j—j-i- K

a

(2) Let K = T*E. The core we identify with T* . The right vertical lift of a
1-form is the pull-back of by the projection

Now, let : —  be asection of ;. We say that this section is linear if it
projects to a mapping : —  and the pair X = ( _) is a vector bundle
morphism

X F—-K,

In a similar way we define linear sections of .

Proposition 23. There exist a unique linear section  of the right vector bundle
structure of K*r such that ( y=0

Proof. Foreach point €  theimageof ~( )under isa vector subspace of
Y (). Wedenote by  °( ) the anihilator of this subspace in l_l(_( )) C

¥ If g p ¢ are the dimensions of fibers of respectively then the
dimension of  °( ) is equal ¢.

We show that °( ) projects to the whole fiber of C* (which is of dimen-
sion ). Since the projection , is linear with respect to the left vector bundle
structure, it is enough to show that ., restricted to the anihilator °( ), is an
injection.

Let  be an element of ker , N °( ). We represent by a pair ( ) €

xp ¥, where = (). Since ( ) is an element of the anihilator °( )

then { () ( () )) should be equal to zero for all . The following calculation
shows that, in this case, must be zero:

It follows that °( ) is the image of a section of , over ~!( ). Collecting
the anihilators of (77%( )) point by point in  we get a section  of ,. The

r

uniqueness of  is obvious. a
Let (© @ 4 @) be alocal coordinate system on  and let ( © ¢ 4 )
be the adopted local coordinate system on  *r. A section of ; is linear if it is of

the form
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A linear section  of , which have the same projection onto section of 7. can be
written as:

The condition { Yy =0 gives

Of special interest is the case of K = J(TE). The left projection is the canonical
projection g: T — and a section of this projection is a vector field on
The right dual to J(TE) we identify with TE* (Example 3 of Section 4)
and a section of the right projection is a vector field on *. Linear sections of
E g+ are vector fields of degree 0. Proposition 23 establishes the one-to-one
correspondence between vector fields of degree 0 on  and vector fields of degree 0
on *. In particular, for E=T | the complete tangent lift dT of a vector field
on  is a vector fields of degree 0 on T (see [9], [1]). One can easily recognize
the corresponding vector field  on the cotangent bundle T*  as the complete

cotangent lift of . In local coordinates, for = i—l., we have

and

7.5. Linear connections and the dual connections. A connection on a
vector fibration E is given by the horizontal distribution and can be represented
by a section of the fibration j*(E) — J°(E) = E. The connection is linear if is
a morphism of vector bundles

E— YE)
where 1(E) is a vector fibration over
A connection on E defines a splitting of the tangent bundle T into the vertical
and horizontal parts. Since the bundle V. of vertical vectors can be identified with

the product E x3; , we can look at the splitting map as an isomorphism of vector

bundles

over the identity of
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Proposition 24. A mapping : T —= (T @y E)xar  is the splitting related
to a linear connection if and only if  defines a double vector bundle morphism

(58) D:TE - K(T E E)
such that the corresponding mappings

(59) o=
lZT — T
P

are 1dentities.

Let  be the the splitting of a linear connection on E. The transposed left dual
to  defines an isomorphism

(60) D*:TE* - K(T E* E¥)

and, because of (59) and (45), [ ¥ areidentities. Thus D* is the splitting

r [
of a linear connection on E*. We call it the dual connection.

Let :E — E* be a metric on E ( is a self-adjoint isomorphism of vector
bundles). The splitting  is the splitting of a metric connection if the following
diagram is commutative

T —D x(T EE
(61) TJ JidTMx X
*
T+ D kT E*EY

7.6. Symmetric connections. In this section E = T . We have then the
canonical isomorphism

1T = JTT )
We introduce also an isomorphism
KT T T )=JKT T T )

by
( )= ( )

Proposition 25. A connection  Is symmetric (torsion-free) if and only if

(62) oD=JD)o u
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1. e., if the following diagram is commutative

T —P kT T T )

(63 v J

J(D)

JOT ) JK(T T T )

Proof. Let ( igok ') be an adopted coordinate system on TT  and let

(* 7 % Iy be acoordinate system on K(T T T ). We have then

c

(64) (o )=
o=
(o )= "
Yo )= ary

On the other hand,

(65) U)o m)=
T Yo m)="
U)o m) ="
LU e a) =Ty

The diagram (63) is commutative if and only if I'; = T%;,

1s symmetric. a

1. e., if the connection

In order to obtain conditions for a connection to be symmetric, in terms of
the dual connection, let us consider first a more general commutative diagram of
isomorphisms of double vector bundles.

(66) KJ LJ

J(®
J(K) # J(L)
The left dual to this diagram is the commutative diagram (see (21))
&+

K" —=——L"
) d |

J(K*r) RLi)
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Using the canonical isomorphisms of K L and K*-* L**  we obtain

(68) K*r = k. (K**00) = £F . (K*)
and
(69) L* = ££, (L9500 = £, (L)
With these identifications, we can replace the diagram (67) by an equivalent one:
K* en L*
(70) %1] Eﬁ
sgaceren HEE )
or
K™ (@) L*
(71) KJ LJ
sgacry 2T e
where

K= Kedlie) 1= IedLi)
In the case of K=TT and L=K(T T T ), we have, as in (41),
(72) K" =JOT* ) L"=JKT T T )
K'=)JT'T ) LY“=K(T T T* )
K*f = T*T* L =K(T T T* )

and the canonical evaluation between L* and L** is given by the formula

(73) () N=C )+{ )
Moreover, for g = a, = ,P= |, we have
(74) ()*=J03%) () =id

% = (JD)™H (@) = J((DH)") = (D)

The commutative diagram (71) is then equivalent to

JAT* ) MJ(K(T T T )
) | |
D

JTHETH )&J(K(T T T )
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and .
T — D kT T T
(76) J( k) J( L)J
J X\ ok,
The isomorphism Ef*r is given by the formula (39)
+
Lre:( ) (= )
and L:Ii(*r :T*T*  — J(T*T ) is a symplectomorphism such that it projects to
the identity on T*  and the core isomorphism is also the identity on T* . The
isomorphism 3: TT* — T*T  is a symplectomorphism between the tangent
canonical symplectic structure on TT*  and the canonical symplectic structure

on T*T  which projects to the identity on T*  and the core isomorphism is also
the identity on T*  ([1], [5]) . It follows that

=J(): ()= (= )
and that g is a symplectomorphism such that it projects to the identity on T*

and the core isomorphism is also the identity on T* . We conclude that x is
the canonical symplectic structure on T* . We get the diagram

TTF — DY g T T
(77) M J
THT* J(D*)*) KT T¢ T+ )

(D*)~! is completely determined by its values on
KT T° T )o ={ ): =0}

and, consequently, by = (D*)~Y( ) Of course, (D*)~*( ) is the horizontal
distribution of D* and ( )= . Thus, the diagram (76) is commutative if and
only if
(78) J(D*)*)o oD*( )= m( )
Let be vector spaces, : — a linear mapping and C a vector
subspace. We have the equality

It follows that, since °=

(79) IO )= °

and, consequently, the equality (77) is equivalent to
= ()

We have proved the following theorem.

Proposition 26. The diagram (78) is commutative (the connection is symmetric)
if and only if the horizontal distribution of the dual connection D* is lagrangian.
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