Previous |  Up |  Next

Article

Keywords:
fixed points; pseudocontractive maps
Summary:
Some new fixed point results are established for mappings of the form $\,F_1+F_2\,$ with $\,F_2\,$ compact and $\,F_1\,$ pseudocontractive.
References:
[1] Banas J., Goebel K.: Measures of noncompactness in Banach spaces. Marcel Dekker, New York, 1980. MR 0591679 | Zbl 0441.47056
[2] Browder F. E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Symp. Pure Math, 18, Part II, Amer. Math. Soc., Providence, 1976. MR 0405188 | Zbl 0327.47022
[3] Day M.: Normed linear spaces. Springer Verlag, Berlin, 1973. MR 0344849 | Zbl 0268.46013
[4] Deimling K.: Ordinary differential equations in Banach spaces. Springer, 596, 1977. MR 0463601 | Zbl 0361.34050
[5] Deimling K.: Zeros of accretive operators. Manuscripta Math., 13(1974), 365–374. MR 0350538 | Zbl 0288.47047
[6] Dugundji J., Granas A.: Fixed point theory. Monografie Mat., PWN, Warsaw, 1982. MR 0660439 | Zbl 0483.47038
[7] Furi M., Pera P.: A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals. Ann. Polon. Math., 47(1987), 331–346. MR 0927581 | Zbl 0656.47052
[8] Gatica J. A., Kirk W. A.: Fixed point theorems for contractive mappings with applications to nonexpansive and pseudo–contractive mappings. Rocky Mount. J. Math., 4(1974), 69–79. MR 0331136
[9] Granas A.: Sur la méthode de continuité de Poincare. C.R. Acad. Sci. Paris, 282(1976), 983–985. MR 0407894 | Zbl 0348.47039
[10] Kirk W. A., Schöneberg R.: Some results on pseudo–contractive mappings. Pacific Jour. Math., 71(1977), 89–100. MR 0487615 | Zbl 0362.47023
[11] Krawcewicz W.: Contribution à la théorie des équations nonlinéaires dan les espaces de Banach. Dissertationes Matematicae, 273(1988). MR 0989165
[12] O’Regan D.: Theory of singular boundary value problems. World Scientific Press, Singapore, 1994. MR 1286741 | Zbl 0807.34028
[13] O’Regan D.: Some fixed point theorems for concentrative mappings between locally convex linear topological spaces. Jour. Nonlinear Anal., 27(1996), 1437–1446. MR 1408881 | Zbl 0874.47035
[14] O’Regan D.: Continuation fixed point theorems for locally convex linear topological spaces. Mathematical and Computer Modelling, 24(1996), 57–70. MR 1408382 | Zbl 0896.47045
[15] Petryshyn W. V.: Structure of the fixed point set of $\,k$–set contractions. Arch. Rational Mech. Anal., 40(1970/71), 312–328. MR 0273480
[16] Precup R.: A Granas type approach to some continuation theorems and periodic boundary value problems with impulses. preprint. Zbl 0847.34028
[17] Schöneberg R.: On the domain invariance theorem for accretive mappings. J. London Math. Soc., 24(1981), 548–554. MR 0635886
[18] Zeidler E.: Nonlinear functional analysis and its applications. Vol I, Springer, New York, 1986. MR 0816732 | Zbl 0583.47050
Partner of
EuDML logo