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FIXED POINT THEORY FOR COMPACT PERTURBATIONS
OF PSEUDOCONTRACTIVE MAPS

DonaL O’REGAN

ABSTRACT. Some new fixed point results are established for mappings of the
form F} + F5 with F> compact and F} pseudocontractive.

1. INTRODUCTION

This paper presents two new fixed point theorems for the sum of two opera-
tors (for example a pseudocontractive plus a compact operator) between Banach
spaces. First however we will establish some general nonlinear alternatives of
Leray—Schauder type. These can be established using the degree theory of Brow-
der [2]. However it is of interest to provide elementary proofs. We do so by using
the topological transversality of Granas [9] (see [6,9,11,12] for an elementary proof
of this result). We remark here that our results were motivated by work of Browder
[2], Deimling [5], Furi and Pera [7], Granas [9] and Kirk and Schoneberg [10].

We next gather together some definitions and some well known facts. Let E be
a Banach space and Qg the family of all bounded subsets of E. The Kuratowskii
measure of noncompactness is the map a : Qg [0, ) defined by

a(X)=inf e>0: X ».X; and diam (X;) € ; here X Qp.
Of course if S|T" Qg then

(i) a(S) =0 iff S is compact
1) a(S5) = a(S)
(i) if S T then «(S) «(T)
) a(co(5)) = a(S)

) a(T+5)  oT)+ «aS).

Let By and By be two Banach spaces and let F:Y  B; B> be continuous

and map bounded sets into bounded sets. We call F' a a—Lipschitzian map if ¥
is continuous, bounded and there is a constant & 0 with «(F(X)) ka(X)
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402 D. O'REGAN

for all bounded sets X Y. We call F' a condensing map if F is a—Lipschitzian
with & =1 and o(F(X)) < a(X) for all bounded sets X YV with a(X) =0.

Let B be a real Banach space and let B* denote the dual of B. Notice from
the Hahn-Banach theorem that
{z* B :2*(2)= 2 ? ¥ = 2 } =
for every & B. The mapping F : B 28" defined by
Fle)={2* B*:z"x)= 2= 2% ?}
is called the duality map [2,4] of B. By means of F, the semi inner product
(., )+ :B B R,is defined by
(r,y)4 =sup y"(z): y" F(y)
Let Q B. A mapping 7:Q B 1s said to be

(1) strongly accretive if for some ¢ > 0,
(1.1) (T(x) T(y),r ys cz y? foral z,y Q
(i) aceretive if
(T(x) T(y),z y)+ 0 forall z,y Q

(iii) pseudocontractive if I T is accretive.

We next state some well known results.

Theorem 1.1. [4]. Let E be a real Banach space and T : E E a continuous
and strongly accretive map (i.e. (1.1) holds for some ¢ > 0). Then T is a
homeomorphism from E onto E. Also T™1: E E is a Lipschitz map with
Lipschitz constant %

Theorem 1.2. [5,17]. (Deimling’s invariance of domain).
Let U E (FE a Banach space) be open and T : U E a continuous and
strongly accretive map. Then T(U) is open.

Theorem 1.3. [16]. Let B be a uniformly convex Banach space, () a bounded,
closed, convex subset of B and £} an open set containing @ with dist (Q), B/Q) >
0. Suppose T :Q B is a continuous pseudocontractive mapping which sends
bounded sets into bounded sets. Then I T is demiclosed on ().

Remark. A mapping 7': ' B B is called demiclosed on TI' if for every
sequence o, ' with z, = 2 and T(z,) Yy as n we have ¢ I and
T(x) = y; here — denotes weak convergence.

Next we state the topological transversality theorem of Granas [6,9,11,14]. Let
E be a Banach space, C' a closed convex subset of £ and U an open subset of
C. Wecall N:U [0,1] C' a condensing map if N is continuous, bounded
(i.e. N(U [0,1]) is a subset of a bounded set in C), a(N(W)) a(xW)

for all bounded sets W of U [0,1] and a(N(£2)) < a(x) for all bounded
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non precompact subsets Q of U [0,1]; here 7 : U [0,1] U is the natural
projection. Kpy (U, C) denotes the set of all condensing maps H : U C with
H(U) a subset of a bounded set in C' and with H fixed point free on 9U. A
mapping F Kap (U, C) is essential if for every H — Kpy (U, C) which agrees
with ' on QU we have that H has a fixed point in U.

Theorem 1.4. [6,9,11,14]. Let U, C and E be as above. Assume N : U
[0,1] C is a condensing map with the following conditions satisfied:

(1.2) N(u,Ay=wu forall w 9U and A [0,1]
and
(1.3) N(.,0) is essential on U.

Then for each A [0,1] there exists at least one fixed point in U for N(.,A).

For convenience we rephrase theorem 1.4. Recall [6,9,11,14] two maps F,G
Kau (U, C) are homotopic in Ky (U, C), written F = G in Ky (U, C) if there
is a condensing map N : U [0,1] C with Ny;(u) = N(u,t):U  C belonging
to KaU(U, () for each ¢ [0,1] and Ny =F, N; = G.

Theorem 1.5. [6,9,11,14]. Let U,C and E be as above. Suppose F' and G
are two maps in Kay (U, C) such that F'= G in Key(U,C). Then F' is essential
iff G is essential.

Theorem 1.6. [6,9,11,14]. Let U,C and E be as above and let ug  U. Define
F:U C by F(u) =wup. Then the constant map F Ky (U,C) is essential.

Theorem 1.4 is valid if the family of maps N(.,A), A [0,1] are defined on
the same domain U. However to prove our fixed point results in section 2 we need
to have results for families of maps N(.,A), A [0,1] which may be defined on
different domains. In fact it is easy to extend theorem 1.4 to this situation; this
extension is due to Precup [16] if the maps are compact. However new arguments
are needed if the mappings are condensing. We conclude the introduction by
stating and proving such a result.

Let E be a Banach space and C' aclosed convex subset of E. Let G C [0,1]
be open in €' [0,1]. Forany @ FE [0,1] let Qx = = FE: (z,A)
denote the section of Q2 at A.

Theorem 1.7. Let G, C and E be as above. Assume N : G C is a condensing
map with

(1.4) N(z,A) ==z forall (x,\) 0G.
In addition suppose there exists p Gy with
(1.5) (I wp+pN(x,0) =2z forall (2,00 0G, 0<pu<1

holding. Then for each A [0, 1] there exists at least one fixed point in Gy for
N(.,A).
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Proof. Let
N*:G [0,1] C [0,1]
be given by

N*(z, A\, ) = (N(z,\), p) for (z,A) G and pu [0,1].

The idea is to apply theorem 1.4 with the Banach space £ R with norm
(z,t) pxp = max & g, t p , the convex set C' [0,1], the open set G, and
the map N*. We claim that

(1.6) N*:G [0,1 C [0,1] is a condensing map
that

(1.7) N*(z, A, u) = (z,A) forall (z,A) IG and p [0,1]
and that

(1.8) N*(z,A,0) = (N(z,A), 0) is essential on G.

If (1.6), (1.7) and (1.8) are true then theorem 1.4 implies for each g [0, 1], there
exists (z,A) G with
N*(z, A, pu) = (z,A)
ie. N(z,A) =2 and p=A. Thus ¢« G, with N(z, ) = z and we are finished.
It remains to prove (1.6), (1.7) and (1.8). We first show that N*: G [0,1]
C' [0,1] is a condensing map.
Remark. If N : G C is a compact map then clearly N* : G [0,1] C

[
1s a compact map from Tychonoft’s theorem and the fact that N*(G [0,1
N(G) [0,1].

Fix ¢t [0,1]. Let Nf :G E t begiven by Nf(z,A) = (N(z,)\), 1) for
(z,A) G. We first show

0,1]
)

(1.9) N;f:G E t isacondensing map for each t [0, 1].
To see this fix ¢ [0,1] and let W be a bounded non precompact subset of G.
Then
a(NF (W) a(N(W) & )=a(N(W)) <a(lV)
so (1.9) is true.
Remark. Note we used above the fact that ag(Q) = ag<r(Q t ) for any

bounded set € in E; here ¢t [0,1] is fixed. To show this suppose ag(Q) < ¢;
here ¢ > 0. Then there exists subsets 1, ..., Q,; of £ with Q 7, €2 and

diam (£;) €. Also
o mfe a()

where diam (€;  Bi(5)) ¢ (using the normin £ R); here B;(5) is the ball

with center ¢ and radius 5. Thus ap(Q2) < ¢ implies agxr(2 ¢ ) ¢ andso

(1.9a) apxr(Q 1) ag(Q)
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(there exists a sequence €, with ¢, «ap(f2) and since agxr(Q t) ¢, for
all n we deduce (1.9¢) immediately).

On the other hand suppose apxpr($ t ) < e. Then there exist subsets
Vi, ...,V of B with Q t ™, Vi and diam (V;) €. Thus

Q 2wV with diam (v V;) e,
and so apxp(© t ) < e implies ap(2) €. Consequently

(19b) OzE(Q) aExR(Q i )

We now prove (1.6). Let W be a bounded non precompact subset of G [0, 1].
Now let €(t) > 0 be such that

(1.10) a(NJ(mW)) < a(rW) 2€(t)

and let V(¢) be a neighborhood of ¢ such that
(1.11)
Nf(z, A) Nz, A) = (0,t s) =t s ¢(t) forall s V(¢) and (z,A) =«W.

Remark. In (1.10) we used the fact that if W is a non precompact subset of
G [0,1] then 7 W is a non precompact subset of G.
Alsoif s,s17  V(¢) and (u, A), (u1, A1) 7W we have
N*(u, Ay s)  N*(ui, A1, s1) = [N¥(u, A s)  N*(u, A 6)] + [N*(ug, A, t)
N*(ur, Ar, s1)] 4 [N (u, A) - N (u, A

and so (1.10) and (1.11) imply
(1.12) (N (xW V(1)) < a(x W).

Now V(¢) :t [0,1] is an open cover of [0,1] and since [0, 1] is compact we
suppose
V(t;),i=1,..,n is a finite covering of [0, 1].

Now (1.12) together with properties of « imply

a(N* (W) a(N* (=W [0,1])
max a(N*(#W V()), i=1,.,n <a(rW)

so (1.6) is true.
Remark. Another way of proving (1.6) is to first show that ag(m Q) = agxr(Q)
for any bounded subset € of E [0, 1]; this follows from the second last remark
and the fact that one can show agyr(2) = ap(rQ 0 ) (notice & 7

0 + 0 [0,1] so apxr() «o(rW 0 ) and the reverse inequality is also
easy). Thus if W is a bounded non precompact subset of G [0, 1], then

a(N*(W))  a(N(xW) [0,1]) = a(N(x W) < a(x W).
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Next we show (1.7) is satisfied. Suppose not i.e. suppose there exists (21, A1)

9G and py  [0,1] with
(x1, A1) = N* (w1, Ay, ) = (N (21, A1), pa).

Then g1 = Ay and N(x1,A1) = #1 with (z1,A) OG. This contradicts (1.4).
Consequenty (1.7) is true. Tt remains to show (1.8).

The idea is to apply theorem’s 1.5 and 1.6. Let the homotopy H : G [0, 1]
C' [0,1] be given by

H(z, A\, p)=((1 p)p+pN(z,A),0) for (z,A\) Gand 0 pu 1.

First notice the map H(x,A,0) = (p,0) is essential on ' by theorem 1.6 (note

(p,0) G since p  Gy). Next weshow H:G [0,1] € [0,1] is a condensing
map. To see this let W be a bounded non precompact subset of G [0,1]. Then

a(HW)) a(eco(N(@W) p) 0)
=a(co(N(#xW) p))=aN#mW)) <a(lrW).

Before we apply theorem 1.5 we need to show that H, : G C [0,1] belongs
to Ksq(G,C  [0,1]) for each g [0,1]. Suppose not i.e. suppose there exists
(#,A) 9G and p [0,1] with H,(x,A) = (z,A). Then (1 p)p+pN(z,A) =z
and A=01ie (1 p)p+pN(z,0)==. Nowif 0 < p <1 we have a contradiction
since (1.5) holds. Tf g =1 then A =0 and N(x,A) = N(x,0) = z, which is a
contradiction since (1.4) holds. If =0 then A =0 and (p,0) = (,A\) IG
which is a contradiction since p  Go (i.e. (p,0) G). Thus H, Ksa(G,C
[0,1]) for each g [0,1]. Theorem 1.5 now implies that H;(z,A) = (N(z, ), 0)
(I

is essential so (1.8) follows.

2. FIXED POINT THEORY

We begin this section by presenting some nonlinear alternatives of Leray-
Schauder type. Our first result is motivated by work of Browder [2].

Theorem 2.1. Let U be an open subset of a real Banach space E and U
a subset of E. Assume p U, and F :U FE isgiven by F = Fy 4+ F,. Here

I F,:Q F iscontinuous and strongly accretive (single valued) with Fy(U)

bounded and F5 :U  E is a continuous, compact map. Then either

(A1) F has a fixed point in U; or
(A2) there exists u  OU and A (0,1) with u=AF(u)+ (1 A)p.

Proof. Now there exists ¢ > 0 with

(2.1) (L Fi)(z) (I F)y),r y, cz y 2 forall z,y Q.
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Clearly I Fy isone toone and (I Fy)~': (I F1)(Q) E is Lipschitz with
Lipschitz constant % since for z1,29 (I F1)(Q) we have
c (I F)7 =) (I ) (=)
(21 oz, (I F)H=) (I F)7 (=),
2oz (I F) Yo (I F)7Hz) .

Let
(2.2) G= (&,AN): 2z E/ X [0,1] and ¢ (I AF)(U)
and for each A [0,1] let G be the section of G at level A i.e.

Ga=({I A)U)= u FE:(uwA) G .

Let J: Gy F begiven by J(z) =p and Ny : G E be given by Ni(u) =
Fz([ Fl)_l(u).

Remark. Fix 0 XA 1. Then I AFy; :Q  F is strongly accretive. This is
immediate since for z,y €,

(L AR)(x) (I AF)(y), = y),
= AR)) (I AR+ Nz y), 2 ),
=M R)@) (I P,z wa+(0 N oy’

Ae+ (1 A) = y?
since (z1 + aza, z2)+ = (z1,72)+ + o 22 © (here z1,z2 FE and « is a scaler).
Also (I AF)~Y:(I AF)(Q) FEisa Llpschltz map with Lipschitz constant
%; here ¢y = Ae+ (1 A) and notice

2

o
Consider the homotopy N : G E joining J and N; given by
(2.3) N(u,A) = AFs(I AF) " Hu)+ (1 A)p.
Fix A [0,1]. Define hy : U E by hy(u ) (I AFy)(u). Now Deimling’s

invariance of domain theorem (theorem 1.2) implies that G\ = hx(U) is open.

Next we claim that hA(U) 1s closed and hA(U) =h\(U) = G To see that hA(U)

is closed let w  hy(U). Then there exists u, U with hy(u,) w. Now since
(Ae+ (1 A) un  um (I AP (ug) (I AF1)(up)

we have that w, is a Cauchy sequence in /. Thus there exists « U with
Up, u. Since hy is continuous we have that h(u,) hx(u) so w = hy(u).
Thus hA(U) is closed. In addition since h) Is continuous we have that hA(U)

hx(U). On the other hand hy(U) ha(U) = hx(U) since hy(U) is closed.
Consequently hy(U) = hy(U) = G,. Next since Fy(U) is bounded there exists a

constant M with F(u) M forall w U. Thusif t,A [0,1] and u U

we have

(2.4) ha(u) he(u) = (A OFw) M (.
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The above together with a result of F. E. Browder [2, Prop. 12.2,p. 189] implies
that G given in (2.2) is an open subset of £ [0,1] and

(2.5) 0G = (2,\):x E, X [0,1] and = (I AF)(dU)

We now return to the homotopy N : G F joining J and N; given in (2.3).
Either N(z,p) = « for all (#,) G or not. Suppose not i.e. suppose there
exists (y,A) IG with N(y,A) = y. Then there exists v 0U (by (2.5)) with
N(y,A) =y = (I AF)(u). Now A = 0 since if A = 0 then p = N(y,0) =
y=1Iu=wu OU,a contradiction. Thus 0 < A 1. Also N(y,A) = y means
A (I AF)~"YHy)+ (1 A)p =y and so

AFo(u) = AF(I AF) Hy)=y (1 Np=( AF)() (1 Np.

That is
AF(u)+ (1 MNp=wu, 0<A 1 and u OU.

Hence (A2) occurs if 0 < A < 1 and (A1) occurs if A =1 and we are finished. So
for the remainder of the proof we assume N(z,p) =« for all (z,p) IG.

Next we claim that N : G __E is a continuous, compact map. To see the
continuity let (yn, An), (¥, A) G with (yn,An)  (y,A). We first show
(2.6) hi () Ry (w).

To see this recall (2.4) implies that given € > 0 there exists a positive integer k
such that for n > k we have

hx, () ha(z) ¢ forall z U.
Let z, = h;j(yn) Thus for n > k we have
Yn  Pa(xn) = ha,(xn)  ha(zn) €.
Also since y,  y then there exists an integer ng k& such that
ha(zn) v 2¢ for n > ng.
Thus as n we have hy(z,) y in E. Consequently
3t () = b3 (ha(za)) R ()

since h;l is continuous on Ay (U) = hA(U) Next notice

N(yn, M) N(y,A)  AaFahil(yn) AF2h3'(y) + An A p
An F2hy ( ) AnFah} ! (y)

+ A Fah(y) /\Fz "y) + Ap
= A, [I9h] (yn) (y)

+ X A thA(y)—l—/\n A op.

Now Fy : U
implies that N :

being continuous together with (2.6) and F»(U) bounded
E is continuous. To see that N is a compact map let

£
G
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(y,A) G. Then y= (I AF)(U),ie. y= (I F)(u) for some u_ U, and

N(y,A) = A1 AF)"Hy)+ (1 Np=AF(u)+ (1 ANp co(F2(U) p).
Consequently

N(G) co(Fa(U) p)

and so

a(N(@)  aleo(Fa(T)  p))=a((l) p)=0.

Consequently N : G FE is a compact map.

Remark. Alternatively one can deduce that N is a compact map if one notices

Fy(U) K, K compact; N(G) @ (K p)

and that @6 (K p ) is compact by Mazur’s theorem.

We are also assuming N(z,A) =« for all (z,A) 0G. Also since N(z,0) =p
we have (1 pu)p + pN(z,0) = « for all (£,0) IG and 0 < p < 1 since if
p= (1 p)p+uN(z,0) =z forsome (#,0) IG and 0 < p < 1 then (p,0) IG
which is a contradiction since p / U = I(0U). Now theorem 1.7 implies that
there exists y Gy = (I F1)(U) with N(y,1) = y. So there exists u U with
N(y,1) =y= (I Fi)(u). Now N(y,1) =y means Fo(I F1)"t(y) =y so

Fy(u)=F(I F) ' y)=y=( F)(u).

That is F(u) = u with « U so (Al) occurs. O

Remark. The assumption that Ay =1 F; :  F is continuous and strongly
accretive in theorem 2.1 could be replaced by the more general condition

hy:Q  E is continuous with h1_1 ch(Q)  E continuous
(2.7) (assuming the inverse h' exists), hi(U) open, hy(U) = hy(U)
and (2.4) holds for some M >0 (independent of u U).

Theorem 2.2. Let U be an open set in a a real Banach space E and Q@ U

a subset of E. Assume 0 U and F :U E is given by F = Fy + F5. Here
I Fy: Q_ FE is continuous andiccretive (ie Fy : Q2 FE is pseudocontractive)

with F1(U) bounded and Fs : U E is a continuous, compact map. Also

assume (I F)(U) is closed. Then either

(A1) F has a fixed point in U; or
(A2) there exists u  OU and A (0,1) with u= AF(u).

Proof. Assume (A2) does not hold. Consider for each n 2,3, ... the mapping

(2.8) Sy = (1 l) F:U E.

n
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Notice (1 %) Fy:U  F is compact and [ (1 %) Fy:Q  FE is strongly
accretive since for xz,y €2 we have

Remark. (z1+az2,22)4 = (21,22)+ +« 22 ?; here 21,22 E and « is a scaler.

Apply theorem 2.1 to S,. If there exists A (0,1) and v 9U with u =
ASp (1) then

n

u:/\<1 l)F(u):nF(u) where 0<77:/\<1 l)<1,
n

which is a contradiction since (A2) was assumed not to hold. Consequently for

each n 2,3,... we have that S, has a fixed point u, U. Notice also since
U, = (1 %) F(uy) we have that w, F(u,)= %F(un) and so u, F(up)

0 (since F(U) is bounded). Consequently 0 (I F)(U) since
(I F)( U) is closed. Thus there exists u U with 0= (I  F)(u). O

Theorem 2.3. Let U be a bounded, open, convex subset of a uniformly convex
Banach space E. Suppose  is an open set containing U with dist (U, E/Q) > 0.
Assume 0 U and F:U FE is given by F = F+Fs. Here I F1:Q FE is
a continuous accretive mapping which sends bounded sets into bounded sets and
Fy: U E is a continuous, compact map. In addition suppose Iy : U I is
strongly continuous. Then either

(A1) F has a fixed point in U; or
(A2) there exists u  OU and A (0,1) with u= AF(u).

Remark. Fy : U  FE is said to be strongly continuous [18] if z, — = implies

Fy(xn)  Fa(x); here zp,2 U

Proof. Assume (A2) does not hold. Consider for each n 2,3, ... the mapping
Sy, given by (2.8). Essentially the same reasoning as in theorem 2.2 implies that
S, has a fixed point u, U.

A standard result in functional analysis (if F is a reflexive Banach space then
any norm bounded sequence in E has a weakly convergent subsequence) implies
(since U is bounded) that there exists a subsequence S of integers and a u U

(notice U is strongly closed and convex so weakly closed) with

Up, — U as N m S.
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Also since u, = (1 %) Fy(un) + (1 %) Fy(up) we have
1 1
1
L b + B B

so since Fy is strongly continuous and F(U) is bounded we have (I Fy)(uy)
FQ(U) o
Theorem 1.3 (i.e. T Fy is demiclosed on U) implies (I Fy)(u) = Fa(u). O

Remark. Of course one can prove theorem 2.3 directly from theorem 2.2 by

showing that (/ F)(U) is closed. To see this let y (I F)(U) so there
exists u, U with (J F)_(un) y. Since u, U there exists a subsequence
S of integers and a u U with w, — u as n in S. Consequently

(I Fuw) ( P ie y=( F)).
Next we present two new fixed point results.

Theorem 2.4. Let () be a closed, convex subset of a a real Banach space E with
0 Q. Alsolet @ @ be asubset of E with Uy = » FE:d(z,Q)< Zl Q
for @ sufficiently large; here d denotes the metric induced by the norm. Now
F.Q E is given by F = Py + Fy where I Fy : Q E is continuous,
strongly accretive (i.e. (2.1) is satisfied) with Fy(U;) bounded and Fy:Q FE
is a bounded continuous,compact map. In addition suppose F2(Q) (I  F1)(Q)
with (I I1)(Q) closed and also that

if (xj, ;) 52, is a sequence in Q) [0,1] converging

to (z,A) withz =AF(z) and 0 A<1, andif z;
(2.9) is a sequence in Uy, (m sufficiently large) with

zj OU; for j=m+1,m+2 ... and z; «, then

Aj[Fi(z;) + Fo(z;)] @ for j sufficiently large

holds. Then F has a fixed point in Q).

Remarks. (i) If Q= F then (I F1)(Q2) = E. Notice theorem 1.1 implies that
I Fy 1s a homeomorphism from £ onto F.

(i) In the statement of theorem 2.4, F (U;) bounded may be replaced by F (Up,)
bounded for some m 1,2,... .

(iii) Theorem 2.4 was proved by Furi and Pera [7], by a different method, when
Fy =0 and Fy is a compact map.

Proof. Let r : E ) be a continuous retraction [13] with »(z) 90Q for
z FE Q. Consider
B={z (I F)Q):z=Fr( F)'(2)}.

We claim B = . To see this we look at »(I  Fi1)"'F;: @ @ (notice this is
a well defined map since F»(Q) (I  F1)(Q)). Now r(I F)7'F:Q @

1s a compact map since Fs : @ E is a compact map and r, (I Fp)~! are
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continuous maps. Schauder’s fixed point theorem implies that there exists y @
with y =r(I  Fy)"'Fa(y). Let z = Fa(y). Then

For(I F) H2)=For(I F) ' Fy(y) = Fa(y) = 2

so z B (notice y @ and F2(Q) (I F1)(R)) and B = . In addition the
continuity of Fyr (I  Fy)~! together with (I Fy)(Q) closed implies that B is
closed. Also

B Q)

together with Fs : ()  F being a compact map implies that B is compact. Let
d=(I F)YB).

Notice @ is a compact set. We claim & @ =
To do this we argue by contradiction. Suppose ® = . Then since ® is
compact and @ is closed there exists § > 0 with dist (®,Q) > . Define

1
Ui:{x E:d(x,Q)<—,} for i N,N+1,... .

?

Here N 1,2,... is chosen so that 1 < 6N and U; Q for i N. Fix
i N,N+41,... . Notice U; is open and since dist (®,Q) > 6 then & U; =

Also For:U; FE is a compact map. Now theorem 2.1 (with Fj + Far) implies
that there exists (v, A;)  OU;  (0,1) with v = A [Fu(ys) + For(w)]

Remark. Notice there cannot exist a y  U; with y = Fi(y) + Far(y) since
® U; = . To see this suppose there exists y U; with y = Fi(y) + Far(y).
We claim y @ (which will yield a contradiction). Let # = (I Fy)(y). Then
z B since

For(I F) HNz)=Fyr(y) =T F)y) =«
andso y .

Consequently for each j N,N +1,... there exists (y;,A;) 0U; (0,1)
with y; = X; [F1(y;) + F2r(y;)]. Notice in particular since y;  dU; that

(2.10) A [Fi(y) + Far(y))] Q for 5 N N+1,.. .
Now let

G= (&,N):z E, X [0,1] and 2 (I AF)(Un) .
As, in theorem 2.1,

G={(,N):z EX [0,1] and 2 (I AF)(Tn)}.
Next let

D= {x E:z (I AF)(Uy) forsome A and Ny(z,A) :x}
where Ny : G F is given by
No(u, Ay = AFar (I AF) ™ (u).
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Also, as in theorem 2.1 since Fyr: Uy  E is a compact map, we have that Nj :
G F is a continuous compact map. Notice z; D, i N,N +1,... where
z; = (I X Fi)(yi). Tosee this notice x; (I X\ Fp)~Y(0U;) (I /\iFl)_l(W)
and
/\Z'FQT(I /\Z'Fl)_l(l‘i) :/\Z'Fzr(yi) = (I /\zFl)(yz) = x;.

Also D is closed. To see this let @ D. Then there exists z, D with z, x.
Also there exists p, [0,1] with 2, (I p,F1)(Uy). Without loss of generality
assume g,  p. Then (z,, 1), (x, 1) G together with Ny : G E continuous
implies No(x,p) = . Hence & D and D is closed. Also since D No(G) we
have that D is compact (so sequentially compact).

This together with A; 1 (for j  N,N+1, ... )implies that we may assume
without loss of generality that A;  A* and z; 2. Now (x;,};), (z*, X*)
G, x; = No(zj,A;) together with Ng: G E continuous implies Ny(z,*, X*) =
z*. Also as in theorem 2.1 (see (2.6)) we have immediately that

y =0 NP)THw) (I X))

Let y* = (I  A*F;)~!(2*). Then y; y* and y* 0@ since y;  OU; so
d(y;, Q) = % Also

M Fy (y) = X For(y) = X For (I NF) NN =25 = (1 NF)(y)

so y* = A F(y*). If A =1 then y* = F(y*), v* 0Q and 2= (I F)(y")
B since

For(I F) N e")=For(y") = Ry =1 Ry ="

Hence y* & which contradicts & () = . Hence we may assume 0 A* < 1.
But in this case (2.9) with z; = r(y;) 0Q, v = y* = r(y*) and z; = y;, implies
A [Fi(y;) + Far(y;)] @ for j sufficiently large. This contradicts (2.10). Thus
® Q= sothereexistsz @ Q. Let z = (I Fy)(x). Then z B since
r @ so Far(I  Fy)~Yz) = z. Consequently, since z @,

Fy(z) = For(x) = Far (] Fl)_l(z) =z=(I F)(x).
That is « = F(z). |

Remarks. (i) Notice we only need the assumptions Fa(Q) (I F1)(2) and
(I F1)(€) closed to show B = and closed.

(i1) Of course if we know that AF, 0 A < 1 has no fixed points on 9Q then
(2.9) is trivially satisfied.

(iii) TIn theorem 2.4 if 0 int (@) then the proof would be a lot simpler (simply
show condition (A2) in theorem 2.1 is not satisfied). In this situation 0 A <1
can be replaced by 0 < A <1 in (2.9).

Theorem 2.5. Let () be a closed, convex subset of a real Banach space I with
0 Q. Alsolet Q@ @Q beasubset of E with U; = = FE:d(z,Q)< Zl Q
for i sufficiently large. Now F : Q) E is given by F = Fy 4+ Fy, where
I F,:Q FE is continuous, accretive (i.e. Fy :§Q  FE Is pseudocontractive)
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with F|(U;) bounded and F»:(@Q F isa continuous, compact map. In addition
suppose I2(Q) (I 1)) with (I F1)(Q) closed and that (2.9) holds. Also
assume (I F)(Q) is closed. Then F has a fixed point in ).

Proof. Consider for each n 2,3, ... the mapping

Sn:<1 l)F:Q E.

n

Asin theorem 2.2, (1 %) Fy:@Q  F 1scompact and [ (1 %) F:Q  FEis
strongly accretive. We will apply theorem 2.4. Let (x5, A;) j=1 be asequence in
0@ [0,1] converging to (z,A) with & = AS,(z) and 0 < A < 1. Also let z;
be a sequence in U,, (m sufficiently large) with z; 0U; for j=m+1,m+2, ...
and z;  x. Then

Aj (1 %) Fi(z) + A (1 %) Fo(aj) = pi i) + pFalzy)  Q,

for j sufficiently large, since (2.9) is satisfied (note p; = A; (1 %) is a sequence
in[0,Jwith 5 A(1 L)=p O<p<land 2=AS,(z) =A(1 1)F(z)=

n n

uF(z)). Apply theorem 2.4 to S, to deduce that S,, has a fixed point w, Q.
Now since u, Fl(uy) = %F(un) we have 0 (I F)(Q) since (I  F)(Q) is
closed. Thus there exists v @ with 0= (I F)(u). O
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