Article
Keywords:
v-projective symmetries; the v-Weyl tensor
Summary:
We prove that the set of the $v$-projective symmetries is a Lie algebra.
References:
[1] Theodorescu, I. D.: Spatii cu conexiune aproape proiectiva. Conexiuni pe varietati diferentiabile, Bucuresti 1980, 116-147.
[2] Nicolescu, L.: Geometria de deformare a doua conexiuni lineare. Capitole speciale de geometrie diferentiala, Bucuresti 1981, 118-160.
[3] Prakash, N.:
Projective mappings on differentiable manifolds. Rocky Mountain J. of Math., 17, No. 3 1987, 511-533.
MR 0908258 |
Zbl 0643.53017
[4] Eisenhart, L. P.:
Non-Riemannian geometry. A.M.S. 1927.
Zbl 1141.53002
[5] Kobayashi, S.:
Foundations of differential geometry. K. Nomizu, Wiley, Interscience Publ., New York-London, vol. I 1963.
Zbl 0526.53001