[1] Aliprantis C. D., Border K. C.:
Infinite dimensional analysis. Springer Verlag, Berlin, 1994
MR 1321140 |
Zbl 0839.46001
[2] Ben-El-Mechaiekh H., Deguire P.:
Approachability and fixed points for non-convex set valued maps. Jour. Math. Anal. Appl., 170 (1992), 477–500
MR 1188567 |
Zbl 0762.54033
[3] Ben-El-Mechaiekh H., Idzik A.:
A Leray-Schauder type theorem for approximable maps. Proc. Amer. Math. Soc., 122 (1994), 105–109
MR 1212281 |
Zbl 0814.47063
[5] Fitzpatrick P. M., Petryshyn W. V.:
Fixed point theorems for multivalued noncompact acyclic mappings. Pacific Jour. Math., 54 (1974), 17–23
MR 0405179 |
Zbl 0312.47047
[6] Furi M., Pera P.:
A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals. Ann. Polon. Math., 47 (1987), 331–346.
MR 0927581 |
Zbl 0656.47052
[7] O’Regan D.:
Some fixed point theorems for concentrative mappings between locally convex spaces. Nonlinear Analysis, 27 (1996), 1437–1446.
MR 1408881
[8] O’Regan D.:
Fixed points and random fixed points for weakly inward approximable maps. Proc. Amer. Math. Soc., (to appear)
MR 1469430 |
Zbl 0918.47049
[9] O’Regan D.:
Multivalued integral equations in finite and infinite dimensions. Comm. in Applied Analysis, (to appear)
MR 1636992 |
Zbl 0903.45005
[10] O’Regan D.:
Nonlinear alternatives for multivalued maps with applications to operator inclusions in abstract spaces. Proc. Amer. Math. Soc., (to appear)
MR 1610765 |
Zbl 0936.47035
[11] O’Regan D.:
A general coincidence theory for set valued maps. (submitted)
Zbl 0938.47036
[12] Zeidler E.:
Nonlinear functional analysis and its applications, Vol 1. Springer Verlag, New York, 1986
MR 0816732