Previous |  Up |  Next

Article

Keywords:
Fixed points; multivalued maps
Summary:
In this paper some new fixed point theorems of Ky Fan, Leray-Schauder and Furi-Pera type are presented for closed multifunctions.
References:
[1] Aliprantis C. D., Border K. C.: Infinite dimensional analysis. Springer Verlag, Berlin, 1994 MR 1321140 | Zbl 0839.46001
[2] Ben-El-Mechaiekh H., Deguire P.: Approachability and fixed points for non-convex set valued maps. Jour. Math. Anal. Appl., 170 (1992), 477–500 MR 1188567 | Zbl 0762.54033
[3] Ben-El-Mechaiekh H., Idzik A.: A Leray-Schauder type theorem for approximable maps. Proc. Amer. Math. Soc., 122 (1994), 105–109 MR 1212281 | Zbl 0814.47063
[4] Deimling K.: Multivalued differential equations. Walter de Gruyter, Berlin, 1992 MR 1189795 | Zbl 0820.34009
[5] Fitzpatrick P. M., Petryshyn W. V.: Fixed point theorems for multivalued noncompact acyclic mappings. Pacific Jour. Math., 54 (1974), 17–23 MR 0405179 | Zbl 0312.47047
[6] Furi M., Pera P.: A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals. Ann. Polon. Math., 47 (1987), 331–346. MR 0927581 | Zbl 0656.47052
[7] O’Regan D.: Some fixed point theorems for concentrative mappings between locally convex spaces. Nonlinear Analysis, 27 (1996), 1437–1446. MR 1408881
[8] O’Regan D.: Fixed points and random fixed points for weakly inward approximable maps. Proc. Amer. Math. Soc., (to appear) MR 1469430 | Zbl 0918.47049
[9] O’Regan D.: Multivalued integral equations in finite and infinite dimensions. Comm. in Applied Analysis, (to appear) MR 1636992 | Zbl 0903.45005
[10] O’Regan D.: Nonlinear alternatives for multivalued maps with applications to operator inclusions in abstract spaces. Proc. Amer. Math. Soc., (to appear) MR 1610765 | Zbl 0936.47035
[11] O’Regan D.: A general coincidence theory for set valued maps. (submitted) Zbl 0938.47036
[12] Zeidler E.: Nonlinear functional analysis and its applications, Vol 1. Springer Verlag, New York, 1986 MR 0816732
Partner of
EuDML logo