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1 Introduction

This paper establishes some fixed point theorems for multivalued condensing maps
with closed graph. In particular we obtain an analogue of (i). Ky Fan’s Fixed Point
Theorem, (ii). Leray-Schauder Alternative, and (iii). Furi-Pera Fixed Point Theo-
rem, for such maps. The need for new fixed point theory for closed multifunctions
arose out of the study of differential and integral inclusions (see [5,9] and their
references). If our operator is compact then a well known result (see [1, page 465])
implies that we may use fixed point theory for upper semicontinuous (u.s.c.) maps.
However a new theory is needed if our map is condensing and not compact. We ini-
tiated the study in [10,11]. This paper continues this study. In addition we simplify
some of the proofs in [10].

For the remainder of this section we describe the type of maps which we will
consider in section 2. Suppose X and Z are subsets of Hausdorff topological
vector spaces E1 and E2 respectively and F : X → 2Z a multifunction (here 2Z

denotes the family of nonempty subsets of Z). Given two open neighborhoods U

and V of the origins in E1 and E2 respectively, a (U, V )-approximate continuous
selection [2,3] of F is a continuous function s : X → Z satisfying

s(x) ∈ (F [(x + U) ∩ X ] + V ) ∩ Z for every x ∈ X.
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F is said to be approximable [3] if its restriction F |K to any compact sub-
set K of X admits a (U, V )-approximate continuous selection for every open
neighborhoods U and V of the origins in E1 and E2 respectively.

Definition 1. We say F ∈ APCG(X, Y ) if F : X → Cc(Y ) is a closed (i.e. has
closed graph), approximable map; here Cc(Y ) denotes the family of nonempty,
closed subsets of Y .

Definition 2. We say F ∈ ACG(X, Y ) if F : X → CD(Y ) is a closed map; here
CD(Y ) denotes the family of nonempty, closed, acyclic (see [5]) subsets of Y .

Recall F is acyclic if for every x ∈ X , Hm(F (x)) = δ0mZ, where {Hm} denotes
the Čech cohomology functor with integer coefficients.

We now recall two results from the literature.

Theorem 3 ([2,3]). Let Q be a convex, compact subset of a locally convex Haus-
dorff linear topological space E and F : Q → C(Q) is a u.s.c., approximable map
(here C(Q) denotes the family of nonempty, compact subsets of Q). Then F has
a fixed point.

Let X be a Banach space and ΩX the bounded subsets of X . The Kuratowski
measure of noncompactness is the map α : ΩX → [0,∞] defined by

α(Z) = inf {ǫ > 0 : Z ⊆ ∪n
i=1 Zi and diam (Zi) ≤ ǫ} ; here Z ∈ ΩX .

Let X1 and X2 be Banach spaces. A multivalued map F : Y ⊆ X1 → X2 is said
to be α-Lipschitzian if it maps bounded sets into bounded sets and if there exists
a constant k ≥ 0 with α(F (Z)) ≤ k α(Z) for all bounded sets Z ⊆ Y . We call
F a condensing map if F is α-Lipschitzian with k = 1 and α(F (Z)) < α(Z)
for all bounded sets Z ⊆ Y with α(Z) 6= 0.

Theorem 4 ([5]). Let Q be a nonempty, closed, convex subset of a Banach space
E. Suppose F : Q → CK(Q) is a u.s.c., condensing map with F (Q) a subset of a
bounded set in E (here CK(Q) denotes the family of nonempty, compact, acyclic
subsets of Q). Then F has a fixed point.

Remark 5. All the results in this paper will be stated and proved when E is a
Banach space (the extension to the case when E is a Fréchet space is immediate).

2 Fixed point theory

We begin this section by proving fixed point theorems of Ky Fan [12] type for
APCG and ACG maps.

Theorem 6. Let Q be a nonempty, convex, closed subset of a Banach space E

and suppose F ∈ APCG(Q, Q) is a condensing map with F (Q) a subset of a
bounded set in Q. Then F has a fixed point in Q.



Fixed Point Theory for Closed Multifunctions 193

Proof. Let x0 ∈ Q. Then [5, Lemma A] guarantees a closed, convex set X with
x0 ∈ X and

X = co (F (Q ∩ X) ∪ {x0}).

Since F (Q) ⊆ Q implies F (Q∩X)∪{x0} ⊆ Q we have X ⊆ Q and so Q∩X = X .
Thus

X = co (F (X) ∪ {x0}).

Since F is condensing we have (using the properties of measure of noncompact-
ness) that X is compact. Thus F : X → 2X with X compact and convex. In
addition the values of F are closed and F |X has closed graph. Now [1, page 465]
implies F |X is u.s.c. Consequently F |X : X → C(X) is a u.s.c., approximable
map and X is convex and compact. Theorem 3 implies that F has a fixed point
in X . ⊓⊔

Similarly we have the following result for ACG maps.

Theorem 7 ([11]). Let Q be a nonempty, convex, closed subset of a Banach
space E and suppose F ∈ ACG(Q, Q) is a condensing map with F (Q) a subset
of a bounded set in Q. Then F has a fixed point in Q.

Proof. Let x0 ∈ Q and construct a convex, compact set X ⊆ Q (as in Theorem 6)
with F : X → 2X . In addition the values of F are closed and acyclic and F |X
has closed graph. Now [1] implies F |X is u.s.c. Consequently F |X : X → CK(X)
is a u.s.c. map and X is convex and compact. Theorem 4 (or indeed Ky Fan’s
Fixed Point Theorem [12]) implies that F has a fixed point in X . ⊓⊔

Remark 8. Note Theorem 6 and Theorem 7 can easily be extended to the Fréchet
space setting.

We now prove a nonlinear alternative of Leray-Schauder type for ACG and
APCG maps. We proved such an alternative in [10]; however here we provide a
simpler proof.

Theorem 9. Let E be a Banach space with U an open, convex subset of E and
x0 ∈ U . Suppose F ∈ ACG(U, E) is a condensing map with F (U) a subset of a
bounded set in E. Then either

(A1) F has a fixed point in U ; or

(A2) there exists u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u) + (1 − λ){x0}.

Proof. Without loss of generality assume x0 = 0. Suppose (A2) does not occur
and F has no fixed points in ∂U . Let

H =
{

x ∈ U : x ∈ λF (x) for some λ ∈ [0, 1]
}

.

Notice that H 6= ∅ is closed. To see this let (xn) be a sequence in H (i.e.
xn ∈ λn F (xn) for some λn ∈ [0, 1]) with xn → x0 ∈ U . Without loss of generality
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assume λn → λ0 ∈ (0, 1]. Since xn ∈ H there exists yn ∈ F (xn) with xn = λn yn.
Now xn → x0 and yn → 1

λ0

x0. The closedness of F implies 1
λ0

x0 ∈ F (x0)
so x0 ∈ H . Thus H is closed. In fact H is compact. To see this notice H ⊆
co (F (H) ∪ {0}) so if α(H) 6= 0, we have

α(H) ≤ α(F (H)) < α(H),

a contradiction. Now since H ∩ ∂U = ∅ there is a continuous function µ : U →
[0, 1] with µ(H) = 1 and µ(∂U) = 0. Define the map J by

J(x) =

{

µ(x)F (x), x ∈ U

{0}, x ∈ E\U.

Now it is easy to check that J : E → CD(E) has closed graph. In addition
J : E → CD(E) is condensing with J(E) a subset of a bounded set in E. To see
this note

J(A) ⊆ co
(

F (U ∩ A) ∪ {0}
)

for any subset A of E. Now Theorem 7 implies that there exists x ∈ E with
x ∈ J(x). Also x ∈ U since 0 ∈ U . Thus x ∈ µ(x)F (x) = λF (x) where
0 ≤ λ = µ(x) ≤ 1. Consequently x ∈ H , which implies µ(x) = 1 and so x ∈ F (x).

⊓⊔

Similarly we have the following nonlinear alternative of Leray-Schauder type
for APCG maps.

Theorem 10. Let E be a Banach space with U an open, convex subset of E

and x0 ∈ U . Suppose F ∈ APCG(U, E) is a condensing map with F (U) a subset
of a bounded set in E. Then either

(A1) F has a fixed point in U ; or

(A2) there exists u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u) + (1 − λ){x0}.

Proof. Without loss of generality assume x0 = 0. Suppose (A2) does not occur
and F has no fixed points in ∂U . Let H, µ, J be as in Theorem 9. Now J : E →
Cc(E) has closed graph and J is condensing with J(E) a subset of a bounded
set in E. Also an easy argument (see the ideas in [8]; note for any compact subset
K of E we have that F |K is u.s.c. (see [1, page 465])) implies J : E → Cc(E)
is approximable. Now Theorem 6 implies that there exists x ∈ E with x ∈ J(x).
Also as in Theorem 9 we have x ∈ F (x). ⊓⊔

Next we prove a new fixed point theorem of Furi-Pera type for ACG and
APCG maps. We discuss the case when E is a Hilbert space and then remark
about the general situation.
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Theorem 11. Let Q be a closed, convex subset of a Hilbert space E with 0 ∈ Q.
In addition suppose F ∈ APCG(Q, E) is a condensing map with F (Q) a subset
of a bounded set in E. Also assume

if {(xj , λj)}
∞

1 is a sequence in ∂Q × [0, 1] converging to (x, λ)
with x ∈ λF (x) and 0 ≤ λ < 1, then there exists j0 ∈ {1, 2, ....}
with {λj F (xj)} ⊆ Q for each j ≥ j0







(1)

holds. Then F has a fixed point in Q.

Remark 12. If F (∂Q) ⊆ Q then (1) holds.

Proof. Define r : E → Q by r(x) = PQ(x) i.e. r is the nearest point projection
on Q. Note r is nonexpansive. Consider

B = {x ∈ E : x ∈ F r (x) }.

Note F r : E → Cc(E) is a condensing map and F r(E) is a subset of a bounded
set in E. Also F r : E → Cc(E) has closed graph. To see this let (yn) be a
sequence in E with yn → y0 and vn ∈ F r (yn) is such that vn converges to
v0. Let zn = r(yn) and so vn ∈ F (zn) and zn → z0 = r(x0). Since F has
closed graph v0 ∈ F (z0) i.e. v0 ∈ F r (y0). Finally notice F r : E → Cc(E)
is an approximable map. To see this take any compact subset K of E. Note
r : K → Q and F : Q → Cc(E). A result of [2, page 468] (follow the reasoning in
Proposition 3.3; note F |r(K) is u.s.c. [1, page 465]) implies F r : E → Cc(E) is an
approximable map. Theorem 6 implies F r has a fixed point so B 6= ∅. We must
show B is closed. To see this let (xn) be a sequence in B (i.e. xn ∈ F r (xn))
with xn → x0 ∈ E. Now since F r has closed graph we have x0 ∈ F r (x0) i.e.
x0 ∈ B. Thus B is closed. In fact B is compact. To see this notice B ⊆ F r (B).
If α(r(B)) 6= 0 then

α(B) ≤ α(F r (B)) < α(r(B)) ≤ α(B),

a contradiction. Thus α(r(B)) = 0 and so α(B) ≤ α(F r (B)) ≤ α(r(B)) = 0 so
B is compact.

It remains to show B∩Q 6= ∅. Suppose this is not true i.e. suppose B∩Q = ∅.
Then there exists δ > 0 with dist (B, Q) > δ. Choose N ∈ {1, 2, ...} such that
1 < δ N . Define

Ui =

{

x ∈ E : d(x, Q) <
1

i

}

for i ∈ {N, N + 1, ...};

here d is the metric induced by the norm. Fix i ∈ {N, N + 1, ...}. Since there is
dist (B, Q) > δ then B ∩ Ui = ∅. Now Theorem 10 implies (since B ∩ Ui = ∅)
that there exists (yi, λi) ∈ ∂Ui × (0, 1) with yi ∈ λi F r (yi). Consequently for
each j ∈ {N, N + 1, ...} there exists (yj , λj) ∈ ∂Uj × (0, 1) with yj ∈ λj F r (yj).
In particular since yj ∈ ∂Uj we have

{λj F r (yi)} 6⊆ Q for each j ∈ {N, N + 1, ...}. (2.2)
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Next let us look at

D = {x ∈ E : x ∈ λF r (x) for some λ ∈ [0, 1] }.

First notice D is closed. To see this let (xn) be a sequence in D (i.e. xn ∈
λn F r (xn) for some λn ∈ [0, 1]) with xn → x0 ∈ E and without loss of generality
assume λn → λ0 ∈ (0, 1]. The closedness of F r (see the argument in Theorem 9)
implies 1

λ0

x0 ∈ F r (x0) so x0 ∈ D [Alternatively, it is easy to see that R : E ×
[0, 1] → Cc(E), given by R(x, λ) = λF r (x), has closed graph so it is immediate
that D is closed]. In fact D is compact. To see this notice

D ⊆ co (F r (D) ∪ {0})

and it is easy to check that α(D) = 0 (since F is condensing and r is non-
expansive). Thus D is compact (so sequentially compact). This together with
d(yj , Q) = 1

j
, |λj | ≤ 1 (for j ∈ {N, N + 1, ...}) implies that we may assume with-

out loss of generality that λj → λ⋆ and yj → y⋆ ∈ ∂Q. Also since yj ∈ λj F r (yj)
we have, since R (defined above) : UN × [0, 1] → Cc(E) has closed graph, that
y⋆ ∈ λ⋆ F r (y⋆). Now λ⋆ 6= 1 since B ∩ Q = ∅. Thus 0 ≤ λ⋆ < 1. But in this
case (1), with xj = r(yj) ∈ ∂Q and x = y⋆ = r(y⋆), implies that there exists
j0 ∈ {N, N + 1, ....} with {λj F r (yj)} ⊆ Q for each j ≥ j0. This contradicts
(2.2). Thus B ∩ Q 6= ∅ i.e. there exists x ∈ Q with x ∈ F r (x) = F (x). ⊓⊔

Remark 13. Of course the result in Theorem 11 holds for certain convex sets in
Banach spaces where there is a nearest point retraction that is nonexpansive (or
more generally α-Lipschitzian with k = 1).

Remark 14. If the map F in Theorem 11 is compact then the Hilbert space can
be replaced by any Banach (or indeed Fréchet) space (this is immediate since all
we need consider is any continuous retraction r with r(z) ∈ ∂Q for z ∈ E\Q;
note such an r exists (see [7])).

Remark 15. There is an obvious analogue of Theorem 11 for ACG maps.
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