Previous |  Up |  Next

Article

Keywords:
hyperbolic system; periodic solution; F property
Summary:
Sufficient conditions for the problem \[ {\partial ^2 u\over \partial x\partial y}=P_0(x,y)u+ P_1(x,y){\partial u\over \partial x}+P_2(x,y){\partial u\over \partial y}+ q(x,y), u(x+\omega _1,y)=u(x,y),\quad u(x,y+\omega _2)=u(x,y) \] to have the Fredholm property and to be uniquely solvable are established, where $\omega _1$ and $\omega _2$ are positive constants and $P_j:R^2\rightarrow R^{n\times n}$ $(j=0,1,2)$ and $q:R^2\rightarrow R^n$ are continuous matrix and vector functions periodic in $x$ and $y$.
References:
[1] Aziz, A. K., Horak, M. G.: Periodic solutions of hyperbolic partial differential equations in the large. SIAM J. Math. Anal. 3 (1972), No. 1, 176-182. MR 0312043
[2] Cesari, L.: Existence in the large of periodic solutions of hyperbolic partial differential equations. Arch. Rational Mech. Anal. 20 (1965), 170-190. MR 0183976 | Zbl 0154.35902
[3] Cesari, L.: Periodic solutions of nonlinear hyperbolic differential equations. Coll. Inter. Centre Nat. Rech. Sci. 148 (1965), 425-437.
[4] Cesari, L.: Smoothness properties of periodic solutions in the large of nonlinear hyperbolic differential systems. Funkcial. Ekvac. 9 (1966), 325-338. MR 0212343 | Zbl 0154.35903
[5] Hale, J. K.: Periodic solutions of a class of hyperbolic equations containing a smalls parameter. Arch. Rat. Mech. Anal. 23 (1967), No. 5, 380-398. MR 0206503
[6] Hartman, P.: Ordinary differential equations. John Wiley & Sons, New York-London-Sydney, 1964. MR 0171038 | Zbl 1009.34001
[7] Kiguradze, T. I.: On the periodic boundary value problems for linear hyperbolic equations I. (Russian). Differentsial’nye Uravneniya 29 (1993), No. 2, 281-297. MR 1236111
[8] Kiguradze, T. I.: On the periodic boundary value problems for linear hyperbolic equations II. (Russian). Differentsial’nye Uravneniya 29 (1993), No. 4, 637-645. MR 1250721
[9] Kiguradze, T. I.: Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Memoirs on Differential Equations and Mathematical Physics 1 (1994), 1-144. MR 1296228 | Zbl 0819.35003
[10] Kiguradze, T. I.: On bounded in a strip solutions of the hyperbolic partial differential equations. Applicable Analysis 58 (1995), 199-214. MR 1383188
[11] Kolmogorov, A. N., Fomin, S. V.: Elements of theory of functions and functional analysis (Russian). Nauka, Moscow, 1989. MR 1025126
[12] Lusternik, L. A., Sobolev, V. I.: Elements of functional analysis (Russian). Nauka, Moscow, 1965. MR 0209802
[13] Lakshmikantham, V., Pandit, S. G.: Periodic solutions of hyperbolic partial differential equations. Comput. and Math. 11 (1985), No. 1-3, 249-259. MR 0787440
[14] Liu Baoping: The integral operator method for finding almost-periodic solutions of nonlinear wave equations. Nonlinear Anal. TMA 11 (1987), No. 5, 553-564. MR 0886648 | Zbl 0666.35005
[15] Žestkov, S. V.: On twice periodic solutions of quasilinear hyperbolic systems. Differentsial’nye Uravnenia 24 (1988), No. 12, 2164-2166.
Partner of
EuDML logo