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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 253 { 272ON PERIODIC IN THE PLANE SOLUTIONS OFSECOND ORDER LINEAR HYPERBOLIC SYSTEMSTariel KiguradzeAbstract. Su�cient conditions for the problem@2u@x@y = P0(x; y)u + P1(x; y)@u@x + P2(x; y)@u@y + q(x; y);u(x+ !1 ; y) = u(x; y); u(x; y + !2) = u(x; y)to have the Fredholm property and to be uniquely solvable are established, where !1and !2 are positive constants and Pj :R2! Rn�n (j = 0;1; 2) and q :R2! Rn arecontinuous matrix and vector functions periodic in x and y.IntroductionLet !1 and !2 be positive constants and Pj : R2 ! Rn�n (j = 0; 1; 2) andq : R2 ! Rn be continuous matrix and vector functions, which are !1 periodic inthe �rst and !2 periodic in the second argument. Consider the linear hyperbolicsystem(0.1) @2u@x@y = P0(x; y)u+ P1(x; y)@u@x + P2(x; y)@u@y + q(x; y)with periodic conditions(0.2) u(x+ !1; y) = u(x; y); u(x; y + !2) = u(x; y) :By a solution of (0.1), (0.2) we understand a continuous vector function u : R2! Rnwhich has continuous partial derivatives @u@x , @u@y , @2u@x@y and satis�es system (0.1) andconditions (0.2) everywhere in R2.Problem (0.1), (0.2) was previously considered in [1-5,13-15]. However, in con-trast to the similar problem in a strip (see e. g. [7-10] and the references therein),the question of its solvability in many interesting cases remains open. The question1991 Mathematics Subject Classi�cation : 35L55, 35L20.Key words and phrases: hyperbolic system, periodic solution, F property.Received April 5, 1995.This paper arose during the author's visit at Masaryk University in Brno, Czech Republic.



254 TARIEL KIGURADZEwhen the problem (0.1), (0.2) has the Fredholm property is also practically open.The present paper deals with these questions.Throughout the paper the following notation is used. Zis the set of integers; Nis the set of natural numbers. Rm�n is the space of m�n matrices X = (xkl) withreal components xkl (k = 1; : : : ;m; l = 1; : : : ; n) and the normkxk = mXk=1 nXl=1 jxklj :Rn = Rn�1; E is the unit matrix; � is the zero matrix.i is the complex unit, i. e. i2 = �1.Ck!(R;Rm�n) is the space of k-times continuously di�erentiable !-periodic functionsZ : R! Rm�n with the normkZkCk! = maxt2R kXl=0 kZ(l)(t)k :Ck!1 !2(R2;Rm�n) (k = 0; 1) is the space of k-times continuously di�erentiablematrix functions Z : R2! Rm�n satisfying the periodic conditionsZ(x + !1; y) = Z(x; y); Z(x; y + !2) = Z(x; y)with the norm kZkCk!1 !2 = max(x;y)2R2 kXl=0 �



 @l@xlZ



+ 



 @l@yl Z



� :C!(R;Rm�n) = C0!(R;Rm�n) ; C!1 !2(R2;Rm�n) = C0!1 !2(R2;Rm�n) :C1;0!1 !2(R2;Rm�n) is the space of matrix functions Z 2 C!1 !2(R2;Rm�n) whichhave the continuous partial derivative in the �rst argument with the normkZkC1;0!1 !2 = max(x;y)2R2�kZ(x; y)k + 



 @@xZ(x; y)



� :C0;1!1 !2(R2;Rm�n) is the space of matrix functions Z 2 C!1 !2(R2;Rm�n) whichhave the continuous partial derivative in the second argument with the normkZkC0;1!1 !2 = max(x;y)2R2�kZ(x; y)k + 



 @@yZ(x; y)



� :De�nition 0.1. Let � be a subspace of the space C!1 !2(R2;Rm�n). We say thatproblem (0.1), (0.2) has property F in �, if for its unique solvability for any q 2 �it is necessary and su�cient that the homogeneous system(0.10) @2u@x@y = P0(x; y)u+ P1(x; y)@u@x + P2(x; y)@u@y



PERIODIC SOLUTIONS 255has no nontrivial solution satisfying conditions (0.2).In x1 of the present paper we obtain conditions for the problem (0.1), (0.2)to have property F in C!1 !2(R2;Rm�n), C1;0!1 !2(R2;Rm�n); C0;1!1 !2(R2;Rm�n) andC1!1 !2 (R;Rm�n), respectively. On the basis of these results in x2 we prove theexistence and uniqueness theorems in the case when Pj(x; y) � Pj(y), (j = 0; 1; 2),i. e. when the systems (0.1) and (0.10) have the form(0.3) @2u@x@y = P0(y)u + P1(y)@u@x + P2(y)@u@y + q(x; y) ;(0.30) @2u@x@y = P0(y)u + P1(y)@u@x + P2(y)@u@y :x1. Problem (0.1), (0.2) with property FEvery time when proving the existence of property F of the problem (0.1), (0.2)in � � C!1 !2(R2;Rm�n), we chose some Banach space depending on the subspace�, reduce the considered problem to some linear Fredholm equation in that spaceand apply the Fredholm alternative ([12, p. 275]).For an arbitrary x 2 R (y 2 R) by Z1(x; �) (Z2(�; y)) we denote the fundamentalmatrix of the system of ordinary di�erential equationsdZ(x; y)dy = P1(x; y)Z(x; y) �dZ(x; y)dx = P2(x; y)Z(x; y)�satisfying the initial conditionZ1(x; 0) = E (Z2(0; y) = E) :Introduce the following matrix functionsM1(x) = Z�11 (x; !2) �E; M2(y) = Z�12 (!1; y) �E:We consider three fundamental cases, when one can speak about property F ofproblem (0.1), (0.2) in the mentioned spaces. These cases will be formulated interms of the matrix functions M1(x) and M2(y).CASE I.(1.1) detM1(x) 6= 0 for x 2 [0; !1]; detM2(y) 6= 0 for y 2 [0; !2] :By H1 : R2 ! Rn�n and H2 : R2 ! Rn�n we will denote the solutions of thematrix di�erential equations@H1(x; y)@x = Z1(x; y) (E � Z1(x; !2))�1 Z�11 (x; y) Z !20 P0(x; t) dtH1(x; y)and @H2(x; y)@y = Z2(x; y) (E � Z2(!1; y))�1Z�12 (x; y) Z !10 P1(s; y) dsH2(x; y)satisfying the initial conditionsH1(0; y) = E for y 2 Rand H2(x; 0) = E for x 2 R :



256 TARIEL KIGURADZETheorem 1.1. Let Pj 2 C!1 !2(R2;Rn�n) (j = 0; 1; 2), conditions (1.1) hold andlet either(1.2) det (E �H1(!1; y)) 6= 0 for y 2 Ror(1.3) det (E �H2(x; !2)) 6= 0 for x 2 R :Then problem (0.1), (0.2) has property F in C!1 !2(R2;Rn).Proof. Let u(x; y) be a solution of problem (0.1), (0.2) and letv(x; t) = @u(x; t)@x :Then @v(x; t)@t = P1(x; t)v(x; t) + q1(x; t) ;where q1(x; t) = P0(x; t)u(x; t) + P2(x; t)@u(x; t)@t + q(x; t):From here by Cauchy formula for systems of linear ordinary di�erential equations(see, e.g. [6], p.66) we havev(x; t) = Z1(x; t)Z�11 (x; y)v(x; y) + Z ty Z1(x; t)Z�11 (x; � )q1(x; � ) d� :Consequently, @u(x; t)@x = Z1(x; t)Z�11 (x; y)@u(x; y)@x ++ Z ty Z1(x; t)Z�11 (x; � )�P0(x; � )u(x; � ) + P2(x; � )@u(x; � )@� + q(x; � )� d� :(1:40)From (0.2), (1.1) and the identity Z1(x; y + !2) � Z1(x; y)Z1(x; !2) it follows that(1.4) @u(x; y)@x =Z y+!2y �Q11(x; y; t)u(x; t) +Q12(x; y; t)@u(x; t)@t � dt+ '1(x; y) ;where Q11(x; y; t) = Z1(x; y)M�11 (x)Z�11 (x; t)P0(x; t);Q12(x; y; t) = Z1(x; y)M�11 (x)Z�11 (x; t)P2(x; t);'1(x; y) = Z1(x; y)M�11 (x) Z y+!2y Z�11 (x; t)q(x; t) dt :



PERIODIC SOLUTIONS 257Similarly we get(1.5) @u(x; y)@y =Z x+!1x �Q21(x; y; s)u(s; y) + Q22(x; y; s)@u(s; y)@s � ds+ '2(x; y) ;where Q21(x; y; s) = Z2(x; y)M�12 (y)Z�12 (s; y)P0(s; y);Q22(x; y; s) = Z2(x; y)M�12 (y)Z�12 (s; y)P1(s; y);'2(x; y) = Z2(x; y)M�12 (y) Z x+!1x Z�12 (s; y)q(s; y) ds :Let us prove the theorem under the assumption that condition (1.2) holds (whenthe condition (1.3) holds the proof is similar). Let us transform (1.4) by means ofintegration by parts@u(x; y)@x = Z1(x; y) (E � Z1(x; !2))�1 Z�11 (x; y) Z !20 P0(x; t) dt u(x; y)++ Z y+!2y Z1(x; y)M�11 (x)Z�11 (x; t)�P1(x; t) Z ty P0(x; � ) d� u(x; t)++�P2(x; t)� Z ty P0(x; � ) d�� @u(x; t)@t � dt+ '1(x; y)and with regard to (1.2) from (0.2) we obtain(1.6) u(x; y) =Z x+!1x Z y+!2y �K11(x; y; s; t)u(s; t) +K12(x; y; s; t)@u(s; t)@t �ds dt+ 1(x; y) ;where K11(x; y; s; t) = H1(x; y) �H�11 (!1; y)� E��1��H�11 (s; y)Z1(s; y)M�11 (s)Z�11 (s; t)P1(s; t) Z ty P0(s; � ) d� ;K12(x; y; s; t) = H1(x; y) �H�11 (!1; y)� E��1��H�11 (s; y)Z1(s; y)M�11 (s)Z�11 (s; t)�P2(s; t) � Z ty P0(s; � ) d�� ; 1(x; y) = H1(x; y) �H�11 (!1; y) � E��1 Z x+!1x H�11 (s; y)'1(s; y) ds :



258 TARIEL KIGURADZEBy substituting (1.6) and (1.4) into (1.5) we get@u(x; y)@y =Z x+!1x Z y+!2y �K21(x; y; s; t)u(s; t) +K22(x; y; s; t)@u(s; t)@t � ds dt+  2(x; y) ;where K2j(x; y; s; t) = Z sx Q21(x; y; �)K1j(�; y; s; t) d�++ Z x+!1s Q21(x; y; �)K1j(�; y; s+ !1; t) d� +Q22(x; y; s)Q1j(s; y; t) (j = 1; 2) ; 2(x; y) = Z x+!1x (Q21(x; y; s) 1(s; y) +Q22(x; y; s)'1(s; y)) ds :In the space C!1 !2(R2;Rn�n) consider the operator equation(1.7) z(x; y) = Z x+!1x Z y+!2y K(x; y; s; t)z(s; t) ds dt+ '(x; y) ;where K(x; y; s; t) = �K11(x; y; s; t) K12(x; y; s; t)K21(x; y; s; t) K22(x; y; s; t)� ;'(x; y) = �'1(x; y)'2(x; y)� :A solution of (1.7) is a column vector function z(x; y) = (zj(x; y))2j=1, where zj 2C!1 !2 (R2;Rn) (j = 1; 2).It is not di�cult to verify that the linear operatorA(z) = Z x+!1x Z y+!2y K(x; y; s; t)z(s; t) ds dtmaps the space C!1 !2(R2;R2n) into itself and, consequently, by virtue of thecontinuity of the matrix function K, it is a completely continuous operator inC!1 !2 (R2;R2n). Hence, equation (1.7) is the Fredholm equation in C!1 !2(R2;R2n).On the other hand we have already shown that if u(x; y) is a solution of problem(0.1), (0.2), then (zj(x; y))2j=1, where z1(x; y) = u(x; y) and z2(x; y) = @u(x;y)@y isa solution of equation (1.7). The converse statement can be easily veri�ed, i. e. if(zj(x; y))2j=1 is a solution of equation (1.7) from C!1 !2(R2;R2n), then z1(x; y) is asolution of problem (0.1), (0.2). Thus, problem (0.1), (0.2) is equivalent to equation(1.7). Therefore problem (0.1), (0.2) has the property F in C!1 !2 (R2;Rn). �



PERIODIC SOLUTIONS 259Theorem 1.2. Let conditions (1.1) hold and let either P1 2 C1;0!1 !2(R2;Rn�n) orP2 2 C0;1!1 !2(R2;Rn�n). Then problem (0.1), (0.2) has property F in C!1 !2(R2;Rn).Proof. Let us prove the theorem under the assumption that P1 2 C1;0!1 !2(R2;Rn�n).The case P2 2 C0;1!1 !2(R2;Rn�n) is absolutely analogous. So, let u(x; y) be a solu-tion of problem (0.1), (0.2). Then the representation (1.5) is valid. By integrationby parts and taking into account conditions (0.2) we arrive to the following equality(1.8) @u(x; y)@y = P1(x; y)u(x; y)++ Z x+!1x �Q21(x; y; s) � @@sQ22(x; y; s)�u(s; y) ds + '2(x; y);whence applying the same technique as when deriving (1.4), we obtain(1.9) u(x; y) = Z x+!1x Z y+!2y K(x; y; s; t)u(s; t) ds dt+  (x; y) ;where K(x; y; s; t) = Z1(x; y)M�11 (x)Z�11 (x; t)Z2(x; t)M�12 (t)Z�12 (s; t)���P0(s; t) + P2(s; t)P1(s; t)� @@sP1(s; t)� ; (x; y)=Z1(x; y)M�11 (x)Z x+!1x Z y+!2y Z�11 (x; t)Z2(x; t)M�12 (t)Z�12 (s; t)q(s; t)ds dt :It is rather obvious fact that equation (1.9) is the Fredholm equation in the spaceC!1 !2 (R2;Rn). It is also easy to verify that every solution of equation (1.9) fromC!1 !2 (R2;Rn) is also a solution of problem (0.1), (0.2). Thus we have shownthat problem (0.1), (0.2) is equivalent to the Fredholm equation (1.9) in the spaceC!1 !2 (R2;Rn). Therefore problem (0.1), (0.2) has property F in C!1 !2 (R2;Rn).�Remark 1.1. In Theorems 1.1 and 1.2 conditions (1.1) are essential and theycannot be weakened. Indeed, consider the problem(1.10) @2u@x@y = sin2(y)u + sin4(y)@u@x � sin2(y)@u@y + j sinyj sin y ;(1.11) u(x+ 2�; y) = u(x; y); u(x; y + 2�) = u(x; y) ;which satis�es all conditions of Theorems 1.1 and 1.2, except of conditions (1.1).In this case we haveM1(x) = exp�� Z 2�0 sin2 t dt�� 1 = exp(��) � 1 < 0 for x 2 R ;M2(y) = exp ��2� sin2 y� � 1 = 0 for y = �k; k 2Z;



260 TARIEL KIGURADZEi. e. only the one part of conditions (1.1) is violated and only at isolated points.Nevertheless, it follows from Remark 2.1 below that the homogeneous problemcorresponding to (1.10), (1.11) has only trivial solution and that the solution ofproblem (1.10), (1.11) u(x; y) has the form u(x; y) = v(y): Therefore, problem(1.10), (1.11) is reduced to the periodic problem for the linear ordinary di�erentialequation dvdy = v + sign (sin y) ; v(y + 2�) = v(y) ;which has unique absolutely continuous but not continuously di�erentiable solutionv(y) = ( exp (�2�) � 1)�1 Z y+2�y exp (�t) sign (sin t) dt :Consequently, problem (1.10), (1.11) has no solution, in spite of the fact that thecorresponding homogeneous problem has only trivial solution.CASE II.Either(1.12) M1(x) = � for x 2 [0; !1]; detM2(y) 6= 0 for y 2 [0; !2]or(1.13) detM1(x) 6= 0 for x 2 [0; !1]; M2(y) = � for y 2 [0; !2] :When P1 2 C1;0!1 !2(R2;Rn�n) and P2 2 C0;1!1 !2(R2;Rn�n) let us introduce thefollowing matrix functions�1(x; y) = P0(x; y) + P2(x; y)P1(x; y)� @@xP1(x; y) ;(1.14) ��1(x; y) = P0(x; y) + P2(x; y)P1(x; y) ;(1.15) �2(x; y) = P0(x; y) + P1(x; y)P2(x; y)� @@yP2(x; y) ;(1.16) ��2(x; y) = P0(x; y) + P1(x; y)P2(x; y) :(1.17)Theorem 1.3. Let conditions (1.12) hold, Pj 2 C1;0!1 !2(R2;Rn�n) (j = 0; 1; 2) and(1.18) det�Z !20 Z�11 (x; t)��1(x; t)Z1(x; t) dt� 6= 0 for x 2 [0; !1] :Then problem (0.1), (0.2) has property F in C1;0!1 !2(R2;Rn).Proof. Let q 2 C1;0!1 !2(R2;Rn) and let u(x; y) be a solution of problem (0.1), (0.2).Then in view of the identity Z1(x; y+!2) � Z1(x; y)Z1(x; !2) and condition (1.12)we have Z1(x; y + !2)Z�11 (x; y) � E :



PERIODIC SOLUTIONS 261Therefore if we substitute t = y + !2 into (1:40), we obtain(1.19) Z y+!2y Z�11 (x; t)�P0(x; t)u(x; t) + P2(x; t)@u(x; t)@t + q(x; t)� dt = 0 ;for x 2 R. By means of integration by parts and taking into account the identityP2(x; y)@u(x; y)@y =P2(x; y)�@u(x; y)@y �P1(x; y)u(x; y)�+P2(x; y)P1(x; y)u(x; y)== P2(x; y)Z1(x; y) @@y �Z�11 (x; y)u(x; y)� + P2(x; y)P1(x; y)u(x; y);from (1.19) we getZ y+!2y Z�11 (x; t)��1(x; t)Z1(x; t) dt Z�11 (x; y)u(x; y)�(1.20)� Z y+!2y �Z ty Z�11 (x; � )��1(x; � )Z1(x; � ) d� �Z�11 (x; t)� Z�11 (x; t)P2(x; t)����@u(x; t)@t �P1(x; t)u(x; t)� dt+ Z y+!2y Z�11 (x; t)q(x; t) dt = 0 :By virtue of conditions (1.12), (1.18) and the equality (1.8), �nally we obtain(1.21) u(x; y) = Z x+!1x Z y+!2y K(x; y; s; t)u(s; t) ds dt+  (x; y) ;whereK(x; y; s; t) = Z1(x; y)�Z !20 Z�11 (x; � )��1(x; � )Z1(x; � ) d���1�� �Z ty Z�11 (x; � )��1(x; � )Z1(x; � ) d� � Z�11 (x; t)P2(x; t)��� Z2(x; t)M�12 (t)Z�12 (s; t)�1(s; t) ; (x; y) = Z1(x; y)�Z !20 Z�11 (x; � )��1(x; � )Z1(x; � ) d���1���Z x+!1x Z y+!2y �Z ty Z�11 (x; � )��1(x; � )Z1(x; � ) d� � Z�11 (x; t)P2(x; t)� ��Z2(x; t)M�12 (t)Z�12 (s; t)q(s; t) ds dt� Z !20 Z�11 (x; t)q(x; t) dt� :The remaining reasoning is similar to that used in the proof of Theorem 1.2. �In the same way we can prove the statement \symmetric" to Theorem 1.3.



262 TARIEL KIGURADZETheorem 1.4. Let conditions (1.13) hold, Pj 2 C0;1!1 !2(R2;Rn�n) (j = 0; 1; 2) and(1.22) det�Z !10 Z�12 (s; y)��2(s; y)Z2(s; y) ds� 6= 0 for y 2 [0; !2] :Then problem (0.1), (0.2) has property F in C0;1!1 !2(R2;Rn�n).Remark 1.2. When proving Theorem 1.3, to derive equation (1.21), we used onlythe fact that P1 2 C1;0!1 !2(R2;Rn�n). The solvability of equation (1.21) in the spaceC!1 !2 (R2;Rn) does not directly depend on smoothness of K(x; y; s; t) and  (x; y)and, hence, on smoothness of P0(x; y); P1(x; y) and q(x; y). But in order that anysolution of equation (1.21) to be a solution of problem (0.1), (0.2), the restrictionsimposed on smoothness of Pj(x; y) (j = 0; 1; 2) and q(x; y) are optimal in somesense and they cannot be weakened. In view of \symmetry" of Theorems 1.3 and1.4, introduce some examples concerning Theorem 1.4.For equations @2u@x@y = p0(y)u + @u@x � 1(1.231) @2u@x@y = u+ p1(y)@u@x � sinx� p1(y)(cos x+ 1) ;(1.232) @2u@x@y = u+ @u@x � q(y) ;(1.233)where p0(y); p(y) and q(y) are positive 2�-periodic and continuous but not di�er-entiable functions, consider the periodic problem(1.24) u(x+ 2�; y) = u(x; y); u(x; y + 2�) = u(x; y):It follows from Remark 2.1 below that each of the problems (1.23j), (1.24) (j =1; 2; 3) may have at most one solution and these solutions, respectively, must havethe following formsu1(x; y) = v(y); u2(x; y) = c0(y) + c1(y) sin x+ c2(y) cos x; u3(x; y) = w(y) :If we substitute them, respectively, into the equations (1.23j) (j = 1; 2; 3), then weget u1(x; y) = 1p0(y) ; u2(x; y) = p1(y) + sinx; u3(x; y) = q(y) :But it is impossible due to the fact that p0(y); p1(y) and q(y) are not di�erentiable.Consequently, problems (1.23j), (1.24) (j = 1; 2; 3) have no solution, although allconditions of Theorem 1.4, except the conditions of smoothness of Pj (j = 0; 1; 2)and q, are ful�lled.CASE III.(1.25) M1(x) = � for x 2 [0; !1]; M2(y) = � for y 2 [0; !2]:



PERIODIC SOLUTIONS 263Theorem 1.5. Let conditions (1.25) hold, Pj 2 C1!1 !2(R2;Rn�n) (j = 0; 1; 2) andinequalities (1.18), (1.22) take place. Then problem (0.1), (0.2) has property F inC1!1 !2 (R2;Rn).Proof. Let q 2 C1!1 !2 (R2;Rn), u(x; y) again be an arbitrary solution of problem(0.1), (0.2) and let v(x; y) = @@x �Z�12 (x; y)u(x; y)� ;w(x; y) = @@y �Z�11 (x; y)u(x; y)� :We have shown above the validity of equality (1.20). Therefore taking into theaccount (1.18), from (1.20) we obtain(1.26) u(x; y) = Z y+!2y Q1(x; y; t)w(x; t) dt+ '1(x; y);where Q1(x; y; t) = Z1(x; y)�Z !20 Z�11 (x; � )��1(x; � )Z1(x; � ) d���1���Z ty Z�11 (x; � )��1(x; � )Z1(x; � ) d� � Z�11 (x; t)P2(x; t)Z1(x; t)� ;'1(x; y) = �Z1(x; y)�Z !20 Z�11 (x; � )��1(x; � )Z1(x; � ) d���1�� Z !20 Z�11 (x; � )q(x; � ) d� :Similarly we obtain(1.27) u(x; y) = Z x+!1x Q2(x; y; s)v(s; y)ds + '2(x; y) ;where Q2(x; y; s) = Z2(x; y)�Z !10 Z�12 (�; y)��2(�; y)Z2(�; y) d���1���Z sx Z�12 (�; y)��2(�; y)Z2(�; y) d� � Z�12 (s; y)P1(s; y)Z2(s; y)� ;'2(x; y) = �Z2(x; y)�Z !10 Z�12 (�; y)��2(�; y)Z2(�; y) d���1�� Z !10 Z�12 (�; y)q(�; y) d� :



264 TARIEL KIGURADZENote that@v(x; y)@y = @@y �Z�12 (x; y)�@u(x; y)@x �P2(x; y)u(x; y)�� == Z�12 (x; y)�P1(x; y)Z2(x; y) � @@yZ2(x; y)� v(x; y)++ Z�12 (x; y) (�2(x; y)u(x; y) + q(x; y))and, analogously,@w(x; y)@x = Z�11 (x; y)�P2(x; y)Z1(x; y) � @@xZ1(x; y)�w(x; y)++ Z�11 (x; y) (�1(x; y)u(x; y) + q(x; y)) :Therefore from (1.26) and (1.27) we havev(x; y) = @@x �Z y+!2y Z�12 (x; y)Q1(x; y; t)w(x; t) dt+ Z�12 (x; y)'1(x; y)� == Z y+!2y (K11(x; y; t)u(x; t) +K12(x; y; t)w(x; t)) dt+  1(x; y) ;(1.28)w(x; y) = @@y �Z x+!1x Z�11 (x; y)Q2(x; y; s)v(s; y) ds + Z�11 (x; y)'2(x; y)� == Z x+!1x (K21(x; y; s)u(s; y) +K22(x; y; s)v(s; y)) ds+  2(x; y) ;(1.29)where K11(x; y; t) = Z�12 (x; y)Q1(x; y; t)Z�11 (x; t)�1(x; t) ;K12(x; y; t) = @@x �Z�12 (x; y)Q1(x; y; t)�+ Z�12 (x; y)Q1(x; y; t)Z�11 (x; t)���P2(x; t)Z1(x; t)� @@xZ1(x; t)� ;K21(x; y; s) = Z�11 (x; y)Q2(x; y; s)Z�12 (s; y)�2(s; y) ;K22(x; y; s) = @@y �Z�11 (x; y)Q2(x; y; s)�+ Z�11 (x; y)Q2(x; y; s)Z�12 (s; y)���P1(s; y)Z2(s; y) � @@yZ2(s; y)� ; 1(x; y) = Z�12 (x; y) Z y+!2y Q1(x; y; t)Z�11 (x; t)q(x; t) dt+ @@x �Z�12 (x; y)'1(x; y)� ; 2(x; y) = Z�11 (x; y) Z x+!1x Q2(x; y; s)Z�12 (s; y)q(s; y) ds + @@y (Z1(x; y)'2(x; y)) :



PERIODIC SOLUTIONS 265If we now substitute (1.27) and (1.29) into (1.28) then we shall get(1.30) v(x; y) = Z x+!1x Z y+!2y K(x; y; s; t)v(s; t) ds dt +  (x; y) ;whereK(x; y; s; t) = K11(x; y; t)Q2(x; t; s) +K12(x; y; t)K22(x; t; s)++ Z sx K12(x; y; t)K21(x; t; �)Q2(�; t; s) d�++ Z x+!1s K12(x; y; t)K21(x; t; �)Q2(�; t; s+ !1) d� ; (x; y) = Z y+!2y K11(x; y; t)'2(x; t) dt+ Z y+!2y K12(x; y; t) 2(x; t) dt++ Z x+!1x Z y+!2y K12(x; y; t)K21(x; t; s)'2(s; t) ds dt :Thus we have shown that if u(x; y) is a solution of problem (0.1), (0.2), thenv(x; y) = @@x �Z�12 (x; y)u(x; y)� is a solution of (1.30). The fact that (1.30) is theFredholm equation in C!1 !2(R2;Rn) is rather obvious. It is easy to verify that ifv(x; y) is a solution of (1.30) then u(x; y), de�ned by equality (1.27), is a solutionof problem (0.1), (0.2). Consequently, problem (0.1), (0.2) is equivalent to (1.30).Therefore it has property F in C1!1 !2(R2;Rn). �Remark 1.3. The restriction, imposed on smoothness of q(x; y) in Theorem 1.5is optimal and it cannot be weakened. Indeed, for the equation(1.31) @2u@x@y = 12u� (q1(x) + q2(y)) ;where q1(x) and q2(y) are 2�-periodic continuous, but not di�erentiable functions,consider the periodic problem(1.32) u(x+ 2�; y) = u(x; y); u(x; y + 2�) = u(x; y) :It follows from Remark 2.1 below that problem (1.31), (1.32) can have at most onesolution and its solution must be of the formu(x; y) = u1(x) + u2(y) ;where u1(x) and u2(y) are some 2�-periodic continuously di�erentiable functions.But then we get that u(x; y) = 2(q1(x) + q2(y)) ;what is impossible due to the fact that q1(x) and q2(y) are not di�erentiable func-tions.Thus we have shown that problem (1.31), (1.32) has no solution although thecorresponding homogeneous problem has only the trivial solution.



266 TARIEL KIGURADZEx2. Existence and uniqueness theorems for problem (0.3), (0.2)In Section 1 when proving the existence of property F of (0.1), (0.2), everytime we were reducing problem (0.1), (0.2) to some Fredholm integral system andthus, we were connecting the unique solvability of our problem with the uniquesolvability of the above mentioned integral system. Therefore, of course, we canobtain various su�cient conditions of the unique solvability of problem (0.1), (0.2)imposing the well-known smallness conditions on the kernel of the integral system.But in this section we shall consider only the special case of problem (0.1), (0.2):problem (0.3), (0.2), since, the conditions of the unique solvability of problem (0.3),(0.2) have rather transparent form and they are unimprovable in a certain sense.If for some m 2Zdet�i2�m!1 E � P2(y)� 6= 0 for y 2 [0; !2];then by Wm(y) denote a solution of the matrix di�erential equationdWdy = �i2�m!1 E � P2(y)��1�P0(y) + i2�m!1 P1(y)�Wsatisfying the initial condition W (0) = E :Theorem 2.1. Let for every m 2Z(2.1) det�i2�m!1 E �P2(y)� 6= 0 for y 2 [0; !2]and(2.2) det(E �Wm(!2)) 6= 0 :Then problem (0.30), (0.2) has only the trivial solution.Proof. Let u(x; y) be an arbitrary solution of problem (0.30) , (0.2). Consider itsassociated Fourier series Xm2Zcm(y)exp�i2�m!1 x�with continuous complex-valued vector coe�cient cm(y) such that for every y 2 R(2.3) limk!1Z !10 




u(s; y) � kXm=�k cm(y)exp�i2�m!1 s�




 ds = 0 :It is clear that (2.3) holds if and only ifcm(y) = 1!1 Z !10 u(s; y)exp��i2�m!1 s� ds



PERIODIC SOLUTIONS 267for any m 2Z. Let us denote this correspondence in the following wayu(x; y) � Xm2Zcm(y)exp�i2�m!1 x� :Then it is clear that@u(x; y)@x � Xm2Zi2�m!1 cm(y)exp�i2�m!1 x� ;@u(x; y)@y � Xm2Zc0m(y)exp�i2�m!1 x� ;@2u(x; y)@x@y � Xm2Zi2�m!1 c0m(y)exp�i2�m!1 x� :Therefore, again by virtue of uniqueness of the Fourier series with regard to condi-tions (2.1) we getc0m(y) = �i2�m!1 E � P2(y)��1�P0(y) + i2�m!1 P1(y)� cm(y) ;cm(y + !2) = cm(y) :But conditions (2.2) yield thatcm(y) � 0 for m 2Z:This means that u(x; y) � 0. �In the similar way we proveTheorem 2.2. Let P2(y) � �,detP0(y) 6= 0 for y 2 [0; !2]and let conditions (2.2) hold for every m 2Znf0g: Then problem (0.30), (0.2) hasonly the trivial solution.Note that for system (0.3) we haveZ1(x; y) � Z1(y); M1(x) � M1 = const;Z2(x; y) = exp (xP2(y)) ; M2(y) = exp (�!1P2(y)) � E :Corollary 2.1. Let(2.4) detM1 6= 0and conditions (2.1) and (2.2) hold for any m 2 Z. Then problem (0.3), (0.2) isuniquely solvable for any q 2 C!1 !2(R2;Rn) :Proof. In fact, we have nothing to prove, since all conditions of Theorem 2.1 holdand inequality (2.4) and inequality (2.1) for m = 0 ensure that the conditions ofTheorem 2.1 are satis�ed. �Analogously it can be veri�ed that Corollaries 2.2, 2.3 and 2.4 below followdirectly from Theorems 1.3 and 2.1, 1.4 and 2.2, 1.5 and 2.2, respectively.



268 TARIEL KIGURADZECorollary 2.2. Let M1 = �;(2.5) det Z !20 Z�11 (t) (P0(t) + P2(t)P1(t))Z1(t) dt 6= 0and conditions (2.1) and (2.2) hold for any m 2 Z. Then problem (0.3), (0.2) isuniquely solvable for any q 2 C1;0!1 !2(R2;Rn).Corollary 2.3. Let detM1 6= 0, P0(y) and P1(y) be continuously di�erentiableand let all conditions of Theorem 2.2 hold. Then problem (0.3), (0.2) is uniquelysolvable for any q 2 C0;1!1 !2(R2;Rn).Corollary 2.4. Let M1 = �,det Z !20 Z�11 (t)P0(t)Z1(t) dt 6= 0 ;P0(y) and P1(y) be continuously di�erentiable and let all conditions of Theorem2.2 hold. Then problem (0.3), (0.2) is uniquely solvable for any q 2 C1!1 !2(R2;Rn).Remark 2.1. Note that if u(x; y) is a solution of problem (0.3), (0.2) then:a) for every m 2 Zits Fourier coe�cient cm(y) is a solution of the periodicproblem�i2�m!1 E � P2(y)� c0m(y) = �P0(y) + i2�m!1 P1(y)� cm(y) + q0m(y) ;(2.6m) cm(y + !2) = cm(y);(2.7m)where q0m(y) = 1!2 Z !20 q0(s; y)exp��i2�m!1 s� ds ;b) in view of the fact that u(x; y) has continuous partial derivatives @u(x;y)@x ,@u(x;y)@y , @2u(x;y)@x@y the Fourier seriesXm2Zcm(y)exp�i2�m!1 x�converge to u(x; y) absolutely and uniformly in R2 (see [11]).Therefore if the conditions of Corollary 2.k (k = 1; 2; 3; 4) hold then the solutionof problem (0.3), (0,2) has the formu(x; y) = Xm2Zcm(y)exp�i2�m!1 x� ;where for every m 2Z cm(y) is the solution of (2.6m), (2.7m).Finally, let us study, separately, the case n = 1, i. e. when (0.3) is an equation.For the equation(2.8) @2u@x@y = p0(y)u + p1(y)@u@x + p2(y)@u@y + q(x; y) ;



PERIODIC SOLUTIONS 269as well as for the homogeneous one(2.80) @2u@x@y = p0(y)u + p1(y)@u@x + p2(y)@u@yconsider the periodic problem(2.9) u(x+ !1; y) = u(x; y); u(x; y + !2) = u(x; y) ;where pj 2 C!2(R;R) (j = 0; 1; 2) and q 2 C!1 !2(R2;R).Let � 2 C!2(R;R) be an arbitrary function. We shall make use of the followingnotation and de�nition:I� = fy 2 [0; !2] : �(y) = 0g; J� = [0; !2]nI� ;�J� is the closure of J� :We say that a function p 2 C!1 !2(R2;R) is �-continuous if it admits the repre-sentation(2.10) p(x; y) = �(y)~p(x; y) ;where ~p 2 C!1 !2(R2;R). I� is a closed set (in view of continuity of �(y)) andtherefore it is clear that the representation (2.10) is unique if and only if I� is anowhere dense set or, what is the same, �J� = [0; !2].By analogy with the case of system introduce the function�(y) = exp (�!1p2(y)) � 1 :It is clear that I� = Ip2 , �(y) is p2-continuous and vice versa, p2(y) is �-continuous.Theorem 2.3. Let R !20 p1(t) dt 6= 0, p0(y); p1(y) and q(x; y) be �-continuous,(2.11) �J� = [0; !2]and let for every m 2Zeither(2.12m) Z !20 p0(t)p2(t)� 4�2m2!21 p1(t)p22(t) + 4�2m2!21 dt 6= 0or m!1 Z !20 p0(t) + p1(t)p2(t)p22(t) + 4�2m2!21 dt 62Z:Then problem (2.8), (2.9) is uniquely solvable.Proof. Let u(x; y) be a solution of problem (2.8), (2.9). By virtue of �-continuityof p0(y), p1(y) and q(x; y) the following representation(2.13) u(x; y) = Z x+!1x Z y+!2y K(x; y; s; t) (~p0(t) + ~p1(t)p2(t))u(s; t) ds dt++ Z x+!1x Z y+!2y K(x; y; s; t)~q(s; t) ds dt



270 TARIEL KIGURADZEis valid, where pj(y) = �(y)~pj(y), (j = 0; 1), q(x; y) = �(y)~q(x; y) andK(x; y; s; t) = exp �R yt p1(� ) d� + p2(t)(x � s)�exp �� R !20 p1(� ) d��� 1 :In view of condition (2.11), such representation is unique. It is clear also that everysolution of integral equation (2.13) from C!1 !2(R2;R) is a solution of problem (2.8),(2.9) too. Consequently, we have only to verify that the homogeneous equation(2.130) u(x; y) = Z x+!1x Z y+!2y K(x; y; s; t) (~p0(t) + ~p1(t)p2(t))u(s; t) ds dthas only the trivial solution in C!1 !2 (R2;R). But this is equivalent to the fact thatfor any m 2 Zproblem (2.6m), (2.7m) has only the trivial solution what followsimmediately from conditions (2.11), (2.12m) . �Theorem 2.4. Let R !20 p1(t) dt 6= 0, p0(y); p1(y) and q(x; y) be �-continuous,(2.14) �J� 6= [0; !2]and let for every m 2 Znf0g condition (2.12m) hold. Then problem (2.8), (2.9)is solvable; moreover, the corresponding homogeneous problem has the in�nitedimensional set of solutions.Proof. By virtue of condition (2.14) there exist positive constants � < � such that[�; �] � I�. Introduce a !2-periodic function 
(y) such that
(y) = � (y � �)(� � y) for y 2 [�; �]0 for y 2 [0; !2]n[�; �] :Let ~p0(y) be a continuous !2-periodic function such that(2.15) p0(y) = �(y)~p0(y) :Then by ~~p0(y) denote a continuous !2-periodic function such that~~p0(y) = ( ~p0(y) for y 2 I�~p0(y) �(y)p2(y) for y 2 J� :It is obvious that if some ~p0(y) satis�es (2.15), then ~p0(y) + �
(y) satis�es also(2.15) for any � 2 R. Therefore, we may chose ~p0(t) such that(2.16) Z !20 ~~p0(t) dt 6= 0 :Let us consider the integral equation (2.13), where ~p0(y) satis�es (2.15) and (2.16)and ~p1 2 C!2(R;R) and ~q 2 C!1 !2(R2;R) are arbitrary functions such thatp1(y) = �(y)~p1(y); q(x; y) = �(y)~q(x; y) :



PERIODIC SOLUTIONS 271In view of that every solution of (2.13) from C!1 !2(R2;R) is also a solution of theproblem (2.8), (2.9), it is su�cient to verify that (2.130) has only trivial solutionin C!1 !2(R2;R). But this is equivalent to the fact that the problemc00(y) = ~~p0(y)c0(y); c0(y + !2) = c0(y);as well as the problem (2.6m), (2.7m), for every m 2 Znf0g, have only the trivialsolution, what follows immediately from conditions (2.16) and (2.12m) forZnf0g.Finally, note that for any k 2 N the solution of the equationu(x; y) = Z x+!1x Z y+!2y K(x; y; s; t) (~p0(t) + ~p1(t)p2(t)) u(s; t) ds dt++ Z x+!1x Z y+!2y K(x; y; s; t)
k(t) ds dtis at the same time a solution of problem (2.80), (2.9). Consequently, problem(2.80), (2.9) has the in�nitedimensional set of solutions. �Theorems 2.3 and 2.4 yield the followingCorollary 2.5. Let p0(y), p1(y) and q(x; y) be �-continuous,p0(y) � 0; p1(y)p2(y) � 0 for y 2 [0; !2]and Z !20 pj(t) dt 6= 0 (j = 0; 1):Then problem (2.8), (2.9) is solvable and its solution is unique if and only if�J� = [0; !2] :References[1] Aziz, A. K., Horak, M. G., Periodic solutions of hyperbolic partial di�erential equations inthe large, SIAM J. Math. Anal. 3 (1972), No. 1, 176-182.[2] Cesari, L., Existence in the large of periodic solutions of hyperbolic partial di�erential equa-tions, Arch. Rational Mech. Anal. 20 (1965), 170-190.[3] Cesari, L., Periodic solutions of nonlinear hyperbolic di�erential equations, Coll. Inter. Cen-tre Nat. Rech. Sci. 148 (1965), 425-437.[4] Cesari, L., Smoothness properties of periodic solutions in the large of nonlinear hyperbolicdi�erential systems, Funkcial. Ekvac. 9 (1966), 325-338.[5] Hale, J. K., Periodic solutions of a class of hyperbolic equations containing a smalls param-eter, Arch. Rat. Mech. Anal. 23 (1967), No. 5, 380-398.[6] Hartman, P.,Ordinary di�erential equations., JohnWiley & Sons, New York-London-Sydney,1964.[7] Kiguradze, T. I., On the periodic boundary value problems for linear hyperbolic equations I.(Russian), Di�erentsial'nye Uravneniya 29 (1993), No. 2, 281-297.[8] Kiguradze, T. I., On the periodic boundary value problems for linear hyperbolic equations II.(Russian), Di�erentsial'nye Uravneniya 29 (1993), No. 4, 637-645.
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