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ON PERIODIC IN THE PLANE SOLUTIONS OF
SECOND ORDER LINEAR HYPERBOLIC SYSTEMS

TARIEL KIGURADZE

ABSTRACT. Sufficient conditions for the problem

3?u
dxdy
(@ +wi,y) = ulz,y), uw(z,y+w)=u(zy)

du du
= Polz,y)u + Pl(lny)% + Pz(l’,y)a—y + q(z,v),

to have the Fredholm property and to be uniquely solvable are established, where w;
and w> are positive constants and P; : R2 - R®*7" (; =0,1,2) and g : R? = R" are
continuous matrix and vector functions periodic in z and y.

INTRODUCTION

Let wy and wy be positive constants and P; : R? — R"*" (j = 0,1,2) and
¢ : B2 5 R” be continuous matrix and vector functions, which are w; periodic in
the first and wy periodic in the second argument. Consider the linear hyperbolic
system

52 0 0
(0.1) 31‘5@/ = Po(z, y)u + Pi(x, y)a—z + P2z, y)% +q(z,y)
with periodic conditions
(0.2) u(x +wr,y) =ulz,y), ulr,y+ws) =ulz,y).

By asolution of (0.1), (0.2) we understand a continuous vector function u : R? — R™

. . . . 2 .
which has continuous partial derivatives 2% 9% 97U and satisfies system (0.1) and
oz’ dy’ dxdy

conditions (0.2) everywhere in RZ.

Problem (0.1), (0.2) was previously considered in [1-5,13-15]. However, in con-
trast to the similar problem in a strip (see e. g. [7-10] and the references therein),
the question of its solvability in many interesting cases remains open. The question
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when the problem (0.1), (0.2) has the Fredholm property is also practically open.
The present paper deals with these questions.

Throughout the paper the following notation is used. Z is the set of integers; N
is the set of natural numbers. R™*" is the space of m x n matrices X = (xy;) with
real components xg; (K =1,...,m,l =1,...,n) and the norm

m n
el =D Jawl .

k=11=1

R” = R™*1: F is the unit matrix; © is the zero matrix.
¢ is the complex unit, i. e. i2 = —1.
ck (R;R™*™) is the space of k-times continuously differentiable w-periodic functions

Z R — R™*" with the norm
k
17l = g3 117
ok

b (RER™XM) (k= 0,1) is the space of k-times continuously differentiable
matrix functions Z : R? — R™*" satisfying the periodic conditions

Z(e4+w,y) = Z(x,y), Zxy+tws)=27(xy)

with the norm

8l
VA = a2l
12y, ., = max, (Ha H*Hayl H)

CM(R;Rmxn) — Cg(R;Rmxn) ’ Cw1w2(R2;Rmxn) CO

Wi W2

(RZ, Rmxn) )

CLO (RZ%R™*") is the space of matrix functions Z € C,,, o, (R%R™*") which

Wi wo
have the continuous partial derivative in the first argument with the norm

0
Zlesp., = o, (N2l + | 52000 )

“rvz o (zy)eR

Co1, (R%R™*") is the space of matrix functions Z € C,,, o, (R%R™*") which

Wi wo
have the continuous partial derivative in the second argument with the norm

d
Zllpor = A —7 .
(Zlesy., = ., (1260001 + | 52260, )

Definition 0.1. Let A be a subspace of the space Cy, o, (R? R™*"). We say that
problem (0.1), (0.2) has property F' in A, if for its unique solvability for any ¢ € A
it 1s necessary and sufficient that the homogeneous system

9%y ou ou

(0.1p) m :Po(x,y)u—l—Pl(x,y)a—x —1—7?2(1*,;1/)%
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has no nontrivial solution satisfying conditions (0.2).
In §1 of the present paper we obtain conditions for the problem (0.1), (0.2)
to have property F' in C, o, (REZR™X?) CLO (RZR™>) COL (RZR™*") and

Wy Wa Wi W2

C’jjlw(R?RmX”), respectively. On the basis of these results in §2 we prove the
existence and uniqueness theorems in the case when P;(z,y) = P;(y), (j =0,1,2),

i. e. when the systems (0.1) and (0.1g) have the form

O%u Ju Ju
(0.3) m—%(y)uw?l(y)@—xﬂ’z(y)@+Q(l‘,y),
0? 15, 15,
(0.30) 69@5@/ =Po(y)u+ 7’1(3/)8—; + 772(3/)5 .

§1. ProBLEM (0.1), (0.2) WITH PROPERTY F

Every time when proving the existence of property F of the problem (0.1), (0.2)
in A C Cy, w,(R%R™*1) we chose some Banach space depending on the subspace
A, reduce the considered problem to some linear Fredholm equation in that space
and apply the Fredholm alternative ([12,p. 275]).

For an arbitrary « € R (y € R) by Z1(z,) (Z2(-,y)) we denote the fundamental
matrix of the system of ordinary differential equations

dz dz
% =Pi(z,y)Z(x,y) (% :Pz(x,y)Z(x,y))
satisfying the initial condition
Z1(x,0)=FE (Z2(0,y) = E).
Introduce the following matrix functions
Mi(x) = Z7 e, wa) — B, Ma(y) = Z5 (w1,y) — E.
We consider three fundamental cases, when one can speak about property F of

problem (0.1), (0.2) in the mentioned spaces. These cases will be formulated in
terms of the matrix functions M; (z) and Ma(y).

CASE 1.

(1.1) det My () # 0 for # € [0,w1], det Ma(y) # 0 for y € [0, wa] .

By H; : B? — B™*" and Hs : B? — R™X? we will denote the solutions of the
matrix differential equations

W = Z1(e,y) (B — Zi(e,w2)) " 27 (2, ) /0w2 Polx,t) dt Hy(z, y)
and
%j’y) — 7o (e, y) (E = Zo(w1, )" Zz—l(x,y)/o P, y) ds Holz, y)

satisfying the initial conditions
H(0,y)=F foryeR

and
Hy(x,0)=F forzelR.
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Theorem 1.1. Let P; € Cy, w,(R%R"¥") (j = 0,1,2), conditions (1.1) hold and
let either

(1.2) det (B — Hi(w1,y)) #0 foryeR
(1.3) det (E — Ha(x,w3)) #0 forz e R.

Then problem (0.1), (0.2) has property I in Cy, ,,(R%R").
Proof. Let u(x,y) be a solution of problem (0.1), (0.2) and let

Ju(x,t
v(e,t) = éx ) :
Then
31}(5;,15) =Pi(z, t)v(z,t) + q1(z, 1),
where
1 .0) = Pofe e, 1)+ Pofe ) D g0

From here by Cauchy formula for systems of linear ordinary differential equations
(see, e.g. [6], p.66) we have

v(e,t) = Zl(x,t)Zl_l(x,y)v(x,y) —1—/ Zl(x,t)Zl_l(x,T)ql(x,T) dr.

Consequently,

(1.4¢)
—|—/y Zl(l‘,t)Zl_l(l‘,T) (Po(x,r)u(x,r)—1—772(1‘,7')%—1—(](1‘,7')) dr.

From (0.2), (1.1) and the identity 71 (#, y 4+ wa2) = Z1(x, y) 71 (2, w2) it follows that

(1.4) a“g;’ Y _

ytwz
/ (Qll(xayat)u($at)+Q12(xayat)%) dt‘i'gpl(xay)a
Y

where

Qui(x,y,t) = Zi(x, y) M7 () 27 (2, 1) Po (2, 1),

Qia2(z,y,t) = Zl(x,y)Ml_l(x)Zl_l(x,t)Pz(x,t),
Y+wsz
prle) = M @) [ 27 @ a0 .
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Similarly we get

(1.5) a“(;y’ v _

r4wi
/ (QZl(xa Y, S)U(Sa y) + QZZ(xa Y, 5) 6“(@“: y)) dS + @z(l‘, y) 3

where

Q21(z,y,58) = Zo(2, y) M5 (y) Z5 " (5, 9)Po(s, y),
Qo2(w,y,5) = Zo(, y) M3 (¥) 25 (5,4)P1(s,y),

r4wi

polen) = Zole) M5 ) [ 2 (s (o) ds.

xr

Let us prove the theorem under the assumption that condition (1.2) holds (when
the condition (1.3) holds the proof is similar). Let us transform (1.4) by means of
integration by parts

6u(81; y) _ Zh(w,y) (B — Z1(2,w2)) "' Z7 Y, y) /0w2 Po(x, t) dt u(x, y)+

+/yy+w2 Zy (e, y) M (2) 27 (2, 1) (ﬂ(m) /y Po(e, 7) dru(z, )+

+ (Pz(x,t) - /ytpo(x,r) dr) %) dt + o1 (z, y)

and with regard to (1.2) from (0.2) we obtain

(1.6) wu(z,y) =
rtwi pytwa
/ / (ffll(%y,s,t)u(s,t) + Ku(%@/ﬁi)%) ds di+11 (2, y)
£ y
where

[(11(l‘,y,8,t) = H1($’y) (Hl_l(wl’y) - E)_l x
t
><H1_1(5,y)Zl(s,y)Ml_l(s)Zl_l(s,t)Pl(s,t)/ Pol(s, ) dr,
y
[(12(xaya5at) = Hl(x’y) (Hl_l(wl’y) - E)_l x

X HT (s, y) Z1 (s, y) M7 H(s) 27 (s, 1) (772(3,15) —/yt%(s,r) dr) ,

r4wi

1/)1(l‘,y) = Hl(xay) (Hl_l(wlay) - E)_l/ Hl_l(s’y)gpl(s’y) ds.

xr
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By substituting (1.6) and (1.4) into (1.5) we get

ou(x,y)
dy
rtwi pytwa 9 t
/ / (Kzl(l‘,y,s,t)u(s,t)+K22(l‘,y,8,t)%) dsdt + s (2, y)
T y
where

[(Zj($aya5at) = / QZl(xayag)[(lj(gayasat) d€+
r4wi
+/ QZl(xayag)[(lj(gayas—i—wlat) d€+Q22(xaya5)Qlj(5ayat) (.7: 1a2)a
r4wi
1/)2($ay) = / (QZl(xaya 5)1/)1(5ay) + Q22($aya 5)@1(5ay)) ds.

In the space Cy, w,(IR% R™*") consider the operator equation

Wy Y+wsz

0 = [ [ Kt dsdipla).
© y

where

. [ Kii(x,y,s,1) Kis(x,y,5,1)
K (x’y’s’t) - ([(zl(l‘,y,s,t) [(ZZ(xayaS’t) ’

(o, y) = (gpl(x,y)) :

302(x’y)

2

A solution of (1.7) is a column vector function z(z,y) = (2;(=,y))7=1,

Cuyw, (RERY) (j =1,2).
It is not difficult to verify that the linear operator

where z; €

Wy Yy+twa
A(z) = / / K(x,y,s,t)z(s,t)dsdt
@ y

maps the space Cy,,(R%R?™) into itself and, consequently, by virtue of the
continuity of the matrix function K, it is a completely continuous operator in
Cuy w, (R%R?M). Hence, equation (1.7) is the Fredholm equation in Cy,, o, (R% R??).

On the other hand we have already shown that if u(x, y) is a solution of problem

(0.1), (0.2), then (zj(x,y))?zl, where z1(z,y) = u(z,y) and z2(z,y) = Maf/il is
a solution of equation (1.7). The converse statement can be easily verified, i. e. if
(zj(z, y))?:1 is a solution of equation (1.7) from Cj,, w,(R% R?™), then zi(z,y) is a
solution of problem (0.1), (0.2). Thus, problem (0.1), (0.2) is equivalent to equation
(1.7). Therefore problem (0.1), (0.2) has the property F in Cy, ,,(R%R™). O
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Theorem 1.2. Let conditions (1.1) hold and let either Py € CL°, (R?%R"%") or

wl Wa

Py € CO (R%L R ™), Then problem (0.1), (0.2) has property F in C,,, o, (R%* R"™).

Wi W2

Proof. Let us prove the theorem under the assumption that Py € CL.0 (RZ R"*").

Wi W2

The case P, € C21 (R%R™ ") is absolutely analogous. So, let u(z,y) be a solu-

Wi W2

tion of problem (0.1), (0.2). Then the representation (1.5) is valid. By integration
by parts and taking into account conditions (0.2) we arrive to the following equality

Ju(z,y)
dy

r4wi 6
+/ <Q21($aya 5) - %Q22($aya 5)) U(S,y) ds + QDZ(xay)a

=P ($’ y)u(x, y)+
(1.8)

whence applying the same technique as when deriving (1.4), we obtain

Wy +wa
(1.9) u(z,y) = / / K(z,y,s,t)u(s, t)dsdt +¢(x,y),
@ y
where
K(x,y,s,t) = Z1 (2, y) M7 &) 27w, 4) Zo (2, ) ML) 257 (5, 1) x

X (Po(s,t) + Pa(s, t)P1(s,t) — %Pl(s,t)) ,
4wy y+wz
(e, y)=Z1(x, y) M / / (2, ) Zolx, ) M5 (1) 25 (5,t)q(s, t)ds dt .

It is rather obvious fact that equation (1.9) is the Fredholm equation in the space
Cuy w, (R%R™). Tt is also easy to verify that every solution of equation (1.9) from
Cu, ws (R%R™) is also a solution of problem (0.1), (0.2). Thus we have shown
that problem (0.1), (0.2) is equivalent to the Fredholm equation (1.9) in the space
Cly w, (R%R™). Therefore problem (0.1), (0.2) has property F in Cy,, ., (R%R").0

Remark 1.1. In Theorems 1.1 and 1.2 conditions (1.1) are essential and they
cannot be weakened. Indeed, consider the problem

2
(1.10) 31‘5@/ = sin?(y) u + sin*(y )g_x — smz(y)g—z + |siny|siny,
(1.11) u(z + 2m,y) = u(e,y), ulz,y+27) =u(x,y),

which satisfies all conditions of Theorems 1.1 and 1.2, except of conditions (1.1).
In this case we have

27
M (z) = exp (—/ sinztdt)—lzexp(—ﬂ')—1<0 for z € R |
0

Ms(y) = exp (—27TSiIl2 y) —1=0 fory=nwk, k€Z,
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i. e. only the one part of conditions (1.1) is violated and only at isolated points.
Nevertheless, 1t follows from Remark 2.1 below that the homogeneous problem
corresponding to (1.10), (1.11) has only trivial solution and that the solution of
problem (1.10), (1.11) u(z,y) has the form wu(x,y) = v(y). Therefore, problem
(1.10), (1.11) is reduced to the periodic problem for the linear ordinary differential
equation

d_Z =v+ sign(siny), v(y+27) =0v(y),

which has unique absolutely continuous but not continuously differentiable solution
y+27
v(y) = (exp (—2m) — 1)_1/ exp (—t) sign (sint) dt .
y

Consequently, problem (1.10), (1.11) has no solution, in spite of the fact that the
corresponding homogeneous problem has only trivial solution.

CASE II.
Either
(1.12) Mi(z) =0© for x € [0,w1], det My(y) #0 for y € [0, ws]
or
(1.13) det My (x) # 0 for » € [0,w1], Ma(y) = O for y € [0, wq].

When P; € CLO, (RLZR™¥™) and Py € COL, (R%LR™¥) let us introduce the

wi Wwao Wi Wa
following matrix functions

0
(114) Fl(xa y) = P0($a y) + PZ(xa y)Pl(xa y) - 6_x7?1(xa y) 3
(1.15) Ly(x,y) = Po(z,y) + P2z, y)Pi(z,y),
0
(116) Fz(l‘, y) = P0($a y) + Pl(xa y)PZ(xa y) - 8_y7?2(xa y) 3
(1.17) La(z,y) = Po(z,y) + Pi(z, y)Pa2(z, ) .
Theorem 1.3. Let conditions (1.12) hold, P; € CL,%, (R%R™ ™) (j =0,1,2) and
(1.18) det (/ Z7 @, )y (2, 1) Z1 (=, 1) dt) #0 forz € [0,w].
0
Then problem (0.1), (0.2) has property I' in CL°, (R*%R").
Proof. Let ¢ € CL°, (R%*R") and let u(x,y) be a solution of problem (0.1), (0.2).

Then in view of the identity 71 (2, y+w2) = Z1 (2, y) Z1(#,w2) and condition (1.12)
we have
Zi(x,y +w)Z7 e, y) = F.
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Therefore if we substitute ¢ = y + ws into (1.4g), we obtain

Ju(z,t)
ot

(1.19) /y+w2 77, 1) (Po(x,t)u(x,t)—i—Pz(x,t) —|—q(x,t)) dt =0,

for € R. By means of integration by parts and taking into account the identity

8“;{/’ y) =Pa(z,y) (%ﬁ/’y)—Pﬂl‘, y)u(zx, y)) +Po(x, y)P1 (2, y)u(z, y) =

Pa(xz,y)
= Pa(z,y) 71 (x, y)aa—y (Zl_l(x, y)u(x, y)) + Pa(z, y)P1(x, y)u(z, y),

from (1.19) we get
Yy+twa B
(1.20) / Z7 N, O (2, 8) Z (2, t) dt Z7 (2, y)ule, y)—
y
Yy+twa t B
—/ (/ Z7 e, T2, 7) 2y (2, ) dr - 27 (e, 1) — Zl_l(x,t)Pz(x,t)) X
y y
{ ytwsz
X (%—Pl(x,t)u(x,t)) dt—I—/ Zl_l(l‘,t)q(x,t) dt=0.
y
By virtue of conditions (1.12), (1.18) and the equality (1.8), finally we obtain

Wy Yy+twa
(1.21) u(z,y) = / / K(z,y,s,t)u(s, t)dsdt +¢(x,y),
@ y

where

-1

K(z,y,5.8) = Z1(x, 1) </0w 77V (a, )Ty (2, 7) 21 (2, 7) dr) «
« (/yt 27N @, 1T (2, 7) 21 (s, 7) dr — Zl_l(x,t)Pz(x,t)) «

X Ty, )My () 25 (s, 1)T1 (s, 1),

-1

W(a,y) = 71 (2, 9) </0w 77V (a, )Ty (2, 7) 21 (2, 7) dr) «
« (/:M /y“w (/yt 27N @, )T (2, 7) 0 (o, 7) dr — Zl_l(x,t)Pz(x,t)) «
% 7o, )My (1) 257 (5, ) (5, 1) dsdt_/0w2 77 (@, )q(x, 1) dt) .

The remaining reasoning is similar to that used in the proof of Theorem 1.2. O

In the same way we can prove the statement “symmetric” to Theorem 1.3.
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Theorem 1.4. Let conditions (1.13) hold, P; € C2:L, (R%R™*™) (j = 0,1,2) and

Wy Wa

(1.22) det (/Owl Z5 (s, 9)T2(s, y) Z2 (s, y) ds) #0 forye[0,ws).

Then problem (0.1), (0.2) has property F in C’g’llw(RZ;R”X”).

Remark 1.2. When proving Theorem 1.3, to derive equation (1.21), we used only
the fact that Py € CL°, (R% R"*"). The solvability of equation (1.21) in the space
Cu, ws (R%R™) does not directly depend on smoothness of K(z,y,s,t) and (z,y)
and, hence, on smoothness of Py(xz,y), P1(z,y) and ¢(z,y). But in order that any
solution of equation (1.21) to be a solution of problem (0.1), (0.2), the restrictions
imposed on smoothness of P;(z,y) (j = 0,1,2) and ¢(z,y) are optimal in some
sense and they cannot be weakened. In view of “symmetry” of Theorems 1.3 and
1.4, introduce some examples concerning Theorem 1.4.

For equations

0%u Ju
0? 0 .
(1.235) 31‘5@/ :u—i—pl(y)@—z—smx—pl(y)(cosx—l—l),
0%u Ju
(1.233) 5eay = 4T o 1),

where po(y), p(y) and ¢(y) are positive 2r-periodic and continuous but not differ-
entiable functions, consider the periodic problem

(1.24) u(z + 2m,y) = u(e,y), ulz,y+27) =u(x,y).

It follows from Remark 2.1 below that each of the problems (1.23;), (1.24) (j =
1,2, 3) may have at most one solution and these solutions, respectively, must have
the following forms

ur(z,y) = v(y), w2z, y) =coly) +er(y)sine +ca(y)cosz, wus(z,y) = wly).

If we substitute them, respectively, into the equations (1.23;) (j = 1,2, 3), then we
get

1
Po(y)
But it is impossible due to the fact that po(y), p1(y) and ¢(y) are not differentiable.
Consequently, problems (1.23;), (1.24) (j = 1,2, 3) have no solution, although all
conditions of Theorem 1.4, except the conditions of smoothness of P; (j = 0,1,2)

and ¢, are fulfilled.

uy (e, y) = , ua(z,y) =pily) +sine,  us(z,y) = q(y) .

CASE III.

(1.25) My(z) =0 for x € [0,w1], Ma(y) =0 for y € [0, ws).
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Theorem 1.5. Let conditions (1.25) hold, P; € C£1w2(R2;R”X”) (j=0,1,2) and
inequalities (1.18), (1.22) take place. Then problem (0.1), (0.2) has property F' in
Cl o, (RERY).
Proof. Let ¢ € C}

L w, (RLR™) ) u(x,y) again be an arbitrary solution of problem
(0.1), (0.2) and let

v(e,y) = 38_1* (Z5 M (x, y)u(e,y))
w(z,y) = a% (27 (&, y)ule,y)) -

We have shown above the validity of equality (1.20). Therefore taking into the
account (1.18), from (1.20) we obtain

ytwsz
(1.26) u(z,y) = / Qi(z,y, Hw(z,t) dt + o1(z, y),

where

-1

Q1 (2,0 8) = 71 (2, 9) (/Ow 27 (7T (2, 7) 21 (2, 7) dr) «
« (/yt 27N @, 1T (2, 7) 21 (s, 7) dr — Zl_l(x,t)Pz(x,t)Zl(x,t)) ,
or(2,y) = — 71 (2,) (/Ow 77 (@, )T (2, 7) 21 (2, 7) dr)_l «

></ Zl_l(a:,r)q(x,r) dr.
0

Similarly we obtain

Wy
(1.27) u(z,y) = / Q2(x,y,s)v(s,y)ds + pa(z,y),

where

-1

Q2(x,y,8) = Za(x,y) (/Ow Z7ME y)Ta(E, y) Z2(€, y) d&) X
x ( / 2N YT (E y) ZaE, ) de —Z;1<s,y>7>1<s,y>zz<s,y>) |

prle) ==2ate) ([ 27 € 00lE 0l dE)

x/o Z7ME y)q(€, ) dE
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Note that

30(5;’ Y _ 3% (Z;l(l‘,y) (% —Pz(l‘,y)u(l‘,y))) —

_ 0
=7 1(1‘,3/) (Pl(x,y)Zz(x,y) — %Zz(l‘,y)) v(z, y)+
+ 23 (2, y) (Ca(z, y)u(z, y) + q(z, )
and, analogously,

Jw(z,y)
Oz

ox
+ 77 (@, y) (Do (z, y)ulz, y) + (e, y)

Therefore from (1.26) and (1.27) we have

= Z7 (=, y) (Pz(x,y)Zl(x,y) — iZl(av,y)) w(z, y)+

ytwsz
e = o ([ A e o 25 e ) ) =

(1.28)
Yy+twa
- / (Ku (e, y, (e, 1) + Kus(a, y, w(e, 1)) di+ i (2, ).

Wy
wle.s) = 5 ( [ a @t s+ Zfl(x,ym(x,y)) -

r4wi
_ / (Ko (2, , 8)u(s, y) + Kaa(z,y, 5)v(s,y)) ds + ¥a(z, y) |
where

[(11(l‘, yat) = Z2_1($a y)Q1($a yat)Z;1($at)Fl(xat) 3

[(12(xayat) = 5% <Z2_1($;y)Q1($;y,t)) + Zgl(xay)Ql($ayat)Zf1($at)X

X (Pz(l‘,t)Z1(x,t) — %Zl(x,t)) ,
[(21(xaya 5) = Zl_l(l‘,y)Qz(l‘,y, S)Zz_l(s’y)rz(s’y) ,
[(22(%:‘/, 5) = ;—y (Zl—l(x’y)Qz(l‘,y, 5)) + Zf1($,y)Q2($,y, S)Zz_l(s,y)x
X (771(5,y)Z2(5,y) — %Zz(s’y)) ’
-1 ytwsz ) P B
iz, y) = 23 (l‘,y)/ Qi(x,y, )77 H(w, t)q(,t) dt + o (27, )1 (2 9))
y

r4wi 6
Yol y) = 27w, y)/ Qa(w,y,5) 25 (s, 9)q(s,y) ds + 5y (1@ 0)ea(w,9) -
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If we now substitute (1.27) and (1.29) into (1.28) then we shall get

Wy Y+wsz
(1.30) v(e,y) = / / K(z,y,s,t)v(s, t)dsdt + (z,y),
@ y
where
[{($a Y, Sat) = [(ll(xa yat)QZ(xata 5) + [(IZ(xa yat)[(ZZ(xata 5)+

—|—/ [(12(xayat)[(Zl(xatag)QQ(gatas) d€+

r4wi
+/ [(12($ayat)[(Zl(xatag)QZ(gata5+w1) dga

ytwsz

Y+wsz
(e, y) = / K (29, t)pa(a, 1) di + / Koo(a, y, ) (o, £) di+
Y

y
Wy Yy+twa
—1—/ / Kia(z,y,t) Koy (2,1, s)pa(s,t) dsdt .
@ y

Thus we have shown that if u(x,y) is a solution of problem (0.1), (0.2), then
v(z,y) = g’—x (Zz_l(x,y)u(x,y)) is a solution of (1.30). The fact that (1.30) is the
Fredholm equation in Cj,, ., (IR? R™) is rather obvious. It is easy to verify that if
v(x,y) is a solution of (1.30) then u(x,y), defined by equality (1.27), is a solution
of problem (0.1), (0.2). Consequently, problem (0.1), (0.2) is equivalent to (1.30).
Therefore it has property F'in C}  (R%R"). O

w1 wa
Remark 1.3. The restriction, imposed on smoothness of ¢(#,y) in Theorem 1.5
is optimal and it cannot be weakened. Indeed, for the equation

u 1
dxdy ~ 2

(1.31) u—(q1(7) + a2(y)) ,

where () and ¢2(y) are 27-periodic continuous, but not differentiable functions,
consider the periodic problem

(1.32) u(z + 2m,y) = u(e,y), ulz,y+27) =u(x,y).

It follows from Remark 2.1 below that problem (1.31), (1.32) can have at most one
solution and its solution must be of the form

u(z,y) = ui(z) + u2(y),

where ui(x) and us(y) are some 2m-periodic continuously differentiable functions.
But then we get that

u(z,y) = 2(q1(x) + q2(y)) ,

what is impossible due to the fact that ¢;(z) and ¢2(y) are not differentiable func-
tions.

Thus we have shown that problem (1.31), (1.32) has no solution although the
corresponding homogeneous problem has only the trivial solution.
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§2. EXISTENCE AND UNIQUENESS THEOREMS FOR PROBLEM (0.3), (0.2)

In Section 1 when proving the existence of property F of (0.1), (0.2), every
time we were reducing problem (0.1), (0.2) to some Fredholm integral system and
thus, we were connecting the unique solvability of our problem with the unique
solvability of the above mentioned integral system. Therefore, of course, we can
obtain various sufficient conditions of the unique solvability of problem (0.1), (0.2)
imposing the well-known smallness conditions on the kernel of the integral system.
But in this section we shall consider only the special case of problem (0.1), (0.2):
problem (0.3), (0.2), since, the conditions of the unique solvability of problem (0.3),
(0.2) have rather transparent form and they are unimprovable in a certain sense.

If for some m € Z

2
det (z ”mE—Pz(y)) £0  fory € [0,ws)],

Wi
then by Wy, (y) denote a solution of the matrix differential equation

2mm

B - 7’2(3/)) B (Po(y) +i

dw (,27rm
— i

Wi

Pi)) W

satisfying the initial condition

wW()=FE.
Theorem 2.1. Let for every m € 7,

(2.1) det (zQZinE - 7?2(3/)) # 0 for y € [0, ws]
and
(2.2) det(F — Wi (w2)) #0.

Then problem (0.3y), (0.2) has only the trivial solution.
Proof. Let u(z,y) be an arbitrary solution of problem (0.3¢), (0.2). Consider its

assoclated Fourier series
2mm
Z em(y)exp | @ ¥

meZl 1

with continuous complex-valued vector coefficient ¢, (y) such that for every y € R

k

u(s,y) = > em(y)exp (iQst)

m=—k 1

Wi

(2.3) lim

k—co fq

ds=0.

It is clear that (2.3) holds if and only if

1 [ 2
em(y) = —/0 u(s, y)exp (—i st) ds

Wi
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for any m € Z. Let us denote this correspondence in the following way

w(z,y) & Y em(y)exp (zQme) :

meZl 1

Then 1t 1s clear that

Ou(z,y) ~ Z Z,271'771&”(3/)65(10 (iQﬂ'mx) ’
m

Oz =y v w1
du(z, y) ' (-27T )
— g e (yexp | i x|,

dy el (v)exp Wi
*u(z,y) 2mm 2mm
“Bedy ngezz o cm (Y)exp | ¢ " x) .

Therefore, again by virtue of uniqueness of the Fourier series with regard to condi-
tions (2.1) we get

ot = (I8~ Py h (Pats) + 2P ) ) e 1),

w1 w1
em (Y +wa) = em(y) -
But conditions (2.2) yield that
em(y) =0 form e 7.
This means that u(z,y) = 0. O
In the similar way we prove
Theorem 2.2. Let P2(y) = O,
detPo(y) #0  for y € [0, ws]
and let conditions (2.2) hold for every m € Z\{0}. Then problem (0.3;), (0.2) has

only the trivial solution.

Note that for system (0.3) we have

Zl(xay)zzl(y)a Ml(x)EMlz const,
Zo(x,y) = exp(aP2(y)) , Ma(y) = exp(—wiPa2(y)) — .

Corollary 2.1. Let
(2.4) det My £ 0

and conditions (2.1) and (2.2) hold for any m € Z. Then problem (0.3), (0.2) is
uniquely solvable for any q € C,, o, (R%R™) .
Proof. In fact, we have nothing to prove, since all conditions of Theorem 2.1 hold

and inequality (2.4) and inequality (2.1) for m = 0 ensure that the conditions of
Theorem 2.1 are satisfied. d

Analogously it can be verified that Corollaries 2.2, 2.3 and 2.4 below follow
directly from Theorems 1.3 and 2.1, 1.4 and 2.2, 1.5 and 2.2, respectively.
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Corollary 2.2. Let M; = 0,
(2.5) det 70 (Polt) + Po0PA(0) Z1(0)dt £ 0

and conditions (2.1) and (2.2) hold for any m € Z. Then problem (0.3), (0.2) is
uniquely solvable for any ¢ € CL.0 (R%R™).

Wi W2

Corollary 2.3. Let det My # 0, Po(y) and P1(y) be continuously differentiable
and let all conditions of Theorem 2.2 hold. Then problem (0.3), (0.2) is uniquely
solvable for any ¢ € C2! (R%R™).

Wy Wa

Corollary 2.4. Let M, = O,

det /w2 ZTHOPo() Z(t) dt £ 0,

Po(y) and Pi(y) be continuously differentiable and let all conditions of Theorem
2.2 hold. Then problem (0.3), (0.2) is uniquely solvable for any ¢ € CL_ (R?/R").

Remark 2.1. Note that if u(x,y) is a solution of problem (0.3), (0.2) then:

a) for every m € 7 its Fourier coefficient ¢, (y) is a solution of the periodic
problem

260 (228 = Pa()) ) = (Pa) + 2P ) ) + 10m ).
(2.7m) em (Y + wa) = em(y),
" qom(y) = wiz/ow qo(s, y)exp (—iQZZn s) ds;

b) in view of the fact that u(x,y) has continuous partial derivatives Maxx’y ,

du(ry) %u(e,y)

5y Bwoy the Fourier series

3" em(y)exp (z 2:” x)

meZl

converge to u(z,y) absolutely and uniformly in R? (see [11]).
Therefore if the conditions of Corollary 2.k (k = 1,2, 3,4) hold then the solution
of problem (0.3), (0,2) has the form

ule,y) = Y em(y)exp (lQan) :

meZl

where for every m € Z. ¢y, (y) is the solution of (2.6,,), (2.7,,).
Finally, let us study, separately, the case n = 1, i. e. when (0.3) is an equation.
For the equation

8%u ou

ou
(2.8) 8x—63/_p0(y)u+p1(y)8_x —|—p2(y)%+q(x,y),
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as well as for the homogeneous one

5%u Ou Ou
(2.80) 20y = po(y)u+pi(y) 5 +pz(y)3—y

consider the periodic problem

(2.9) u(z +wr,y) =ulz,y), ulz,y+ws) =ulz,y),

where p; € C,, (R;R) (j =0,1,2) and q € Cy, o, (R%R).
Let n € Cy, (R;R) be an arbitrary function. We shall make use of the following
notation and definition:

Iy ={y€0,wa]: n(y) =0}, Jy =1[0,w2]\1,

jn is the closure of J,.
We say that a function p € C,, w,(R% R) is n-continuous if it admits the repre-
sentation

(2.10) p(z,y) = n(y)p(z,y),

where p € Cy, w,(R%R). I, is a closed set (in view of continuity of n(y)) and
therefore it is clear that the representation (2.10) is unique if and only if I, is a
nowhere dense set or, what is the same, J,, = [0, ws].

By analogy with the case of system introduce the function

p(y) = exp (—wipa(y)) — 1.

It is clear that I, = I,,, p(y ) is pa-continuous and vice versa, pa(y) is pg-continuous.
Theorem 2.3. Let f t)ydt #0, po(y), p1(y) and ¢(x,y) be p-continuous,
(2.11) Ju = 1[0,ws]

and let for every m € Z either

wa po(t)p2(t) — Epa (1)
(2.12,,) / 5 prr dt #0
0 p3(t) + w?
or

m (% po(t) + p1(t)p2(t)
wiJo o p3(t) + e

wy

Then problem (2.8), (2.9) is uniquely solvable.

ez

Proof. Let u(x,y) be a solution of problem (2.8), (2.9). By virtue of p-continuity
of po(y), p1(y) and ¢(z,y) the following representation

rtwi  py+tws
u(z,y) / / K(z,y,5,1) (Po(t) + p1(t)p2(t)) u(s, t) ds dt+

(2'13) r+wy y+wz
/ / K(z,y,8,6)4(s,t)dsdt
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is valid, where p;(y) = pu(y)p; (), (j = 0,1), ¢(z,y) = p(y)4(=,y) and

exp (f; pi(r) dr + pa(t)(x — 5))
exp (— fow pi(r)dr) —1
In view of condition (2.11), such representation is unique. It is clear also that every

solution of integral equation (2.13) from Cl, o, (R% R) is a solution of problem (2.8),
(2.9) too. Consequently, we have only to verify that the homogeneous equation

K(z,y,8,1) =

(2.13p) u(z,y) = /x-l—wl /y+w2 K(z,y,5,1) (Po(t) +p1(t)p2(t)) u(s,t) dsdt

has only the trivial solution in C,, ., (R%R). But this is equivalent to the fact that
for any m € Z problem (2.6,,), (2.7,,) has only the trivial solution what follows
immediately from conditions (2.11), (2.12,,) . d

Theorem 2.4. Let fow p1(t)dt £ 0, po(y), p1(y) and q(z,y) be p-continuous,

(2.14) Ju # [0, ws]

and let for every m € Z\{0} condition (2.12,,) hold. Then problem (2.8), (2.9)
is solvable; moreover, the corresponding homogeneous problem has the infinite
dimensional set of solutions.

Proof. By virtue of condition (2.14) there exist positive constants v < /4 such that
la, 8] C I,. Introduce a wy-periodic function ¥(y) such that

( )_{ (y—a)(f-y) foryele,p
T = 0 for y € [0,ws)\[a, 4]

Let po(y) be a continuous wa-periodic function such that

(2.15) po(y) = p(y)po(y) -

Then by ;30(31) denote a continuous ws-periodic function such that

N ( Po(y) fory € I,
Poly) = - .
0 po(y)z%(%% fory e J,

It is obvious that if some po(y) satisfies (2.15), then po(y) + Ay(y) satisfies also
(2.15) for any A € R. Therefore, we may chose py(t) such that

(2.16) /w2 Po(t)dt #0.

Let us consider the integral equation (2.13), where py(y) satisfies (2.15) and (2.16)
and p; € Cy,(R;R) and § € Cyy, o, (R%R) are arbitrary functions such that

pi(y) = pWn(y), q(z,y) = py)i(z,y).
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In view of that every solution of (2.13) from C,, ., (R? R) is also a solution of the
problem (2.8), (2.9), it is sufficient to verify that (2.13y) has only trivial solution
in Cy, w,(R%R). But this is equivalent to the fact that the problem

ch(y) = Po(W)eo(y),  coly +wa) = eoly),

as well as the problem (2.6,,), (2.7y,), for every m € Z\{0}, have only the trivial
solution, what follows immediately from conditions (2.16) and (2.12,,) for Z\{0}.
Finally, note that for any & € I the solution of the equation

4wy y+wz
o) = [ /’ K (,9,5,8) (5o (t) + P (Dps (1)) u(s, £) ds i+

Wy y+wz
/ / K(x,y,s t)y"(t) ds dt

is at the same time a solution of problem (2.8y), (2.9). Consequently, problem
(2.8p), (2.9) has the infinitedimensional set of solutions. d

Theorems 2.3 and 2.4 yield the following
Corollary 2.5. Let po(y), p1(y) and ¢(x,y) be p-continuous,

po(y) >0, pi(y)p2(y) <0 fory € [0,ws]

and

| nitdrzo i=o),
0
Then problem (2.8), (2.9) is solvable and its solution is unique if and only if

jN = [0,(.02] .
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