Previous |  Up |  Next

Article

Keywords:
inner product space; norm derivative $\rho ^{\prime }_{\pm }$; bisectrix; perpendicular bisector
Summary:
We define the radius of the inscribed and circumscribed circumferences in a triangle located in a real normed space and we obtain new characterizations of inner product spaces.
References:
[1] Alsina, C., Guijarro, P. and Tom s, M. S.: On heights in real normed spaces and characterizations of inner product structures. Jour. Int. Math. & Comp. Sci. Vol. 6, N. 2, 151-159 (1993). MR 1239743
[2] Alsina, C., Guijarro, P. and Tom s, M. S.: A characterization of inner product spaces based on a property of height’s transform. Arch. Math. 61 (1993), 560-566. MR 1254068
[3] Alsina, C. and Garcia Roig, J. L.: On a functional equation characterizing inner product spaces. Publ. Math. Debrecen 39 (1991), 299-304. MR 1154261
[4] Alsina, C., Guijarro, P. and Tom s, M. S.: Some remarkable lines of a triangle in real normed spaces and characterizations of inner product structures. (Accepted for publication in Aequationes Mathematicae).
[5] Amir, D.: Characterization of inner product spaces. Basel-Boston (1986). MR 0941812 | Zbl 0384.46007
[6] James, R. C.: Inner products in normed linear spaces. Bull. Amer. Math. Soc. Vol. 53 (1947), 559-566. MR 0021242 | Zbl 0041.43701
[7] Tapia, R. A.: A characterization of inner product spaces. Proc. Amer. Math. Soc. Vol. 41 (1973), 569-574. MR 0341041 | Zbl 0286.46025
Partner of
EuDML logo