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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 233 { 239CHARACTERIZATIONS OF INNER PRODUCTSTRUCTURES INVOLVING THE RADIUS OF THEINSCRIBED OR CIRCUMSCRIBED CIRCUMFERENCEC. Alsina, P. Guijarro and M.S. TomásAbstract. We de�ne the radius of the inscribed and circumscribed circumferencesin a triangle located in a real normed space and we obtain new characterizations ofinner product spaces.1. On the radius of the inscribedcircumference in a triangle in a normed spaceIn an inner product space (i.p.s.) the radius of the inscribed circumference ina triangle of sides x; y and x� y is given by the formula(1) ps(s � kxk)(s� kyk)(s � kx� yk)swhere s is the semiperimeter s = (kxk+ kyk+ kx� yk)2 .Let (E; k k) be a real normed space. If x; y are two independent vectors inEnf0g and (see [4]) if w(x; y) = kykx+ kxkykxk+ kyk is the bisectrix of x and y, in thetriangle of sides x; y and x�y, we can consider the bisectrices w(x; y), w(�y; x�y)and w(�x; y � x). It is a straightforward computation to prove that these threelines intersect in a point, i.e. there exist three constants� = kxk+ kyk2s ; � = kyk+ kx� yk2s ; 
 = kxk+ kx� yk2s ;in R such that �w(x; y) = y + �w(�y; x� y) = x+ 
w(�x; y � x)1991 Mathematics Subject Classi�cation : 1980, Rev. 1985: 46C99.Key words and phrases: inner product space, norm derivative �0�, bisectrix, perpendicularbisector.Received January 18, 1995.



234 C. ALSINA, P. GUIJARRO AND M.S. TOMÁSNow, in order to de�ne the radius of the inscribed circumference, we need ade�nition of height in a real normed space. To do that, let us consider (see [5])the functions �0� : E �E ! R de�ned by�0�(x; y) = limt!0� kx+ tyk2 � kxk22t :The mappings �0� play a crucial role in characterizing inner product spaces. Infact, when the norm derives from an inner product (E; �), then �0�(x; y) = x � y,i.e., �0� reduce to the given inner product.We quote here some elementary results concerning the functions �0� that wewill use in this paper:(i) �0�(x; x) = kxk2 and j�0�(x; y)j � kxk kyk(ii) �0+(�x; y) = �0+(x; �y) = ��0+(x; y), � � 0(iii) �0+(�x; y) = �0+(x; �y) = ��0�(x; y), � � 0(iv) �0+(x; �x+ y) = �0+(x; y) + �kxk2(v) �0+(x; y) = �0+(y; x) for all x; y in E if and only if E is an inner productspace.In [1] by using the functions �0� we introduce the following de�nition of heightover the side x� yh(x; y) = y + �0+(y � x; y)kx� yk2 (x� y) for all x; y in E linearly independent;so we can de�ne \the radius r(x; y) of the inscribed circumference" as the norm ofh (�w(x; y); �w(�y; x� y)), i.e.(2) r(x; y) := kxk kyk2s 



 xkxk � �0�� ykyk ; xkxk� ykyk



Observe that r(x; y) is not symmetric in x and y.We want to �nd when the expressions (1) and (2) are equal.Theorem 1.1. Let (E; k k) be a real normed space with dim E � 2. Then E isan i.p.s. if and only if for all linearly independent vectors x; y in Er(x; y) = ps(s � kxk)(s� kyk)(s � kx� yk)swhere s = kxk+ kyk+ kx� yk2 .Proof. If we assume that r(x; y) de�ned by (2) can be obtained by means of (1),then we have: r(x; y)2 = (s � kxk)(s� kyk)(s � kx� yk)s



CHARACTERIZATIONS OF INNER PRODUCT STRUCTURES : : : 235i.e.kxk2kyk24s2 



 xkxk � �0� � ykyk ; xkxk� ykyk



2 = (s � kxk)(s � kyk)(s � kx� yk)sor equivalently



kykx� �0�(y; x) ykyk



2 = 4s(s � kxk)(s � kyk)(s � kx� yk):Substituting in this equality y by tz, with t > 0, dividing by t2 and taking limitswhen t tends to zero, we obtainkkzkx � �0�(z; x) zkzk



2 = limt!0+ 4s(s � kxk)(s� ktzk)(s� kx� tzk)t2= limt!0+ 4t2 kxk+ tkzk+ kx� tzk2 � tkzk+ kx� tzk � kxk2 �� kxk+ kx� tzk � tkzk2 � kxk+ tkzk � kx� tzk2= limt!0+ (kx� tzk+ tkzk)2 � kxk22t kxk2 � (kx� tzk � tkzk)22t == limt!0+��kx� tzk2 � kxk22(�t) + kzk22 t + kx� tzk kzk� ���kx� tzk2 � kxk22(�t) � kzk22 t+ kx� tzk kzk�= ���0�(x; z) + kxk kzk� ��0�(x; z) + kxk kzk�= kxk2kzk2 � �0�(x; z)2;and therefore 

kzk2x� �0�(z; x)z

2 = kzk2 �kxk2kzk2 � �0�(x; z)2� :The substitution x = z + y yieldskzk2 �kz + yk2kzk2 � �0�(z + y; z)2� = 

kzk2(z + y) � �0�(z; z + y)z

2= 

kzk2z + kzk2y � kzk2z � �0�(z; y)z

2= 

kzk2y � �0�(z; y)z

2 == kzk2 �kyk2kzk2 � �0�(y; z)2� ;i.e., kyk2kzk2 � �0�(y; z)2 = kz + yk2kzk2 � �0�(z + y; z)2:



236 C. ALSINA, P. GUIJARRO AND M.S. TOMÁSThus for all linearly independent vectors u; v in E with kuk = kvk = 1, if wesubstitute in the last equality z = u� v, y = v we obtain:kvk2ku� vk2 � �0�(v; u� v)2 = kuk2ku� vk2 � �0�(u; u� v)2;and consequently ���0�(v; u� v)�� = ���0�(u; u� v)��which in turn implies ���0�(v; u)� kvk2�� = ��kuk2 � �0+(u; v)��, i.e.,��1� �0�(v; u)�� = ��1� �0+(u; v)�� :Since �0�(v; u) � kuk kvk = 1 and �0+(u; v) � kuk kvk = 1 we deduce�0�(v; u) = �0+(u; v);and interchanging the roles of u and v:�0�(u; v) = �0+(v; u);whence �0+(v; u) = �0�(u; v) � �0+(u; v) as well as �0+(u; v) = �0�(v; u) � �0+(v; u),i.e., �0+(u; v) = �0+(v; u), whenever kuk = kvk = 1, u; v independent vectors and Eis an inner product space. �Note. The value r(x; y) as introduced above is not the unique possible de�nition ofthe radius of the inscribed circumference, since we can consider other heights likeh (�w(x; y); 
w(�x; y � x)), h (�w(�y; x� y); �w(x; y)),h (�w(�y; x� y); 
w(�x; y � x)), h (
w(�x; y � x); �w(x; y)) orh (
w(�x; y � x); �w(�y; x� y)) instead of h (�w(x; y); �w(�y; x� y)).2. On the radius of the circumscribedcircumference in a triangle in a normed spaceIf E is an i.p.s. and x; y are two independent vectors in Enf0g, in the triangle ofsides x; y and x�y, the center of the circumscribed circumference is the intersectionof the perpendicular bisectors, and the radius R is given by the formulakxk kyk kx� yk4ps(s � kxk)(s � kyk)(s � kx� yk)where s = (kxk+ kyk + kx� yk) =2 is the semiperimeter of the triangle.In a real normed space (E; k k) we can consider the perpendicular bisector ofthe side x� y by takingM (x; y) = �x+ y2 + �u = � 2 R�



CHARACTERIZATIONS OF INNER PRODUCT STRUCTURES : : : 237where u is a vector in E \orthogonal" to x� y.We can assume that u admits the form u = �x + �y and having in mind thatin an i.p.s. u � (x� y) = 0 is immediate to prove that� �kxk2 � x � y� = � �kyk2 � x � y� :Thus in the real normed space E, replacing the inner product � by �0�, we canconsider u = �kyk2 � �0�(x; y)� x+ �kxk2 � �0�(y; x)� yandM (x; y) = �x+ y2 + � �(kyk2 � �0�(x; y))x+ (kxk2 � �0�(y; x))y� = � 2 R�The next step is to de�ne the radius R. First in the triangle of sides x; y andx� y considering the corresponding three perpendicular bisectors is easy to provethat this three lines intersected in a point, i.e., there exist �; �; 
 in R such thatx2 + 
w = y2 + �v = x+ y2 + �uwhere u; v and w are respectively \orthogonal" to x� y, y and x.Then, we de�ne R(x; y) as the norm of x2 + 
w and by a straightforward com-putation we obtain that R(x; y) has the following expressionR(x; y) = 

kyk2 �kxk2 � �0�(x; y)�x+ kxk2 �kyk2 � �0�(y; x)� y

2kxk2kyk2 � �0�(x; y)2 � �0�(y; x)2 :This de�nition is only possible if�0�(x; y)2 + �0�(y; x)2 < 2kxk2kyk2i.e., ���0�(x; y)�� < kxk kyk or ���0�(y; x)�� < kxk kyk. For this reason we will assumethat E is strictly convex (in these spaces j�0�(x; y)j 6= kxk kyk for all x and y in Elinearly independent (see [7])).Theorem 2.1. Let (E; k k) be a strictly convex real normed space with dimE � 3. E is an i.p.s., if and only if, for all x; y independent vectors in Enf0gR(x; y) = kxk kyk kx� yk4ps(s � kxk)(s� kyk)(s � kx� yk)where s = (kxk+ kyk + kx� yk) =2.



238 C. ALSINA, P. GUIJARRO AND M.S. TOMÁSProof. If we let y = tz with t > 0 and we take limit when t tends to zero weobtain kxk2 

kzk2x� �0�(z; x)z

2kxk2kzk2 � �0�(x; z)2 � �0�(z; x)2 = limt!0+R(x; tz) == 0@ limt!0+ kxk2t2kzk2kx� tzk2[kx� tzk2 � (tkzk � kxk)2] h(kxk+ tkzk)2 � kx� tzk2i1A1=2 == kxkkzk� limt!0+ tkx� tzkkx� tzk2 � (tkzk � kxk)2�1=2 �� limt!0+ tkx� tzk(kxk+ tkzk)2 � kx� tzk2!1=2= kxkkzks kxk�2�0�(x; z) + 2kxk kzks kxk2kxk kzk+ 2�0�(x; z) == kzk kxk22pkxk2kzk2 � �0�(x; z)2and therefore,



 xkxk � �0�� zkzk ; xkxk� zkzk



 = 2� �0� � xkxk ; zkzk�2 � �0� � zkzk ; xkxk�22r1� �0� � xkxk ; zkzk�2 :If u = xkxk , v = zkzk , then for all unitary and independent vectors u and v inE 

u� �0�(v; u)v

 = 2� �0�(u; v)2 � �0�(v; u)22p1� �0�(u; v)2Now, if �0�(v; u) = 0, then,2q1� �0�(u; v)2 = 2� �0�(u; v)2and therefore �0�(u; v) = 0 and (see [5], [6]) E is an i.p.s. �Note. If we de�ne the radius R(x; y) as the norm of y2 + �v or as the norm ofx+y2 +�u the same expression obtained in the initial de�nition of R(x; y) appears.



CHARACTERIZATIONS OF INNER PRODUCT STRUCTURES : : : 239Analogous de�nitions of R(x; y) can be given by replacing the role of �0� by �0+or by changing the order of the arguments appearing in �0�. For example if weconsider that the radius of the circumscribed circumference is given byR̂(x; y) = 

kyk2 �kxk2 � �0+(x; y)�x+ kxk2 �kyk2 � �0+(y; x)� y

2 �kxk2kyk2 � �0�(x; y)2�which is equal to R(x; y) in an i.p.s. then, a strictly convex real normed space Ewith dim E � 2 is an i.p.s. if and only ifR̂(x; y) = kxk kyk kx� yk4ps(s � kxk)(s � kyk)(s � kx� yk) :The proof is immediate using the fact that the symmetry of the second memberof last expression and the symmetry of the numerator of R̂(x; y) imply �0�(x; y)2 =�0�(y; x)2 for all x; y in E and E is an i.p.s.References[1] Alsina, C., Guijarro, P. and Tomás, M. S., On heights in real normed spaces and charac-terizations of inner product structures, Jour. Int. Math. & Comp. Sci. Vol. 6, N. 2, 151-159(1993).[2] Alsina, C., Guijarro, P. and Tomás, M. S., A characterization of inner product spaces basedon a property of height's transform, Arch. Math. 61 (1993), 560-566.[3] Alsina, C. and Garcia Roig, J. L., On a functional equation characterizing inner productspaces, Publ. Math. Debrecen 39 (1991), 299-304.[4] Alsina, C., Guijarro, P. and Tomás, M. S., Some remarkable lines of a triangle in realnormed spaces and characterizations of inner product structures, (Accepted for publicationin Aequationes Mathematicae).[5] Amir, D., Characterization of inner product spaces, Basel-Boston (1986).[6] James, R. C., Inner products in normed linear spaces, Bull. Amer. Math. Soc. Vol. 53 (1947),559-566.[7] Tapia, R. A., A characterization of inner product spaces, Proc. Amer. Math. Soc. Vol. 41(1973), 569-574.C. Alsina, P. Guijarro and M.S. TomásSecció de Matematiques, ETSABUniv. Politécnica CatalunyaDiagonal 64908028 Barcelona, SPAIN
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