Previous |  Up |  Next

Article

Keywords:
contact metric manifolds; Tanaka connection; Jacobi operator
Summary:
In the present paper we investigate a contact metric manifold satisfying (C) $(\bar{\nabla }_{\dot{\gamma }}R)(\cdot ,\dot{\gamma })\dot{\gamma }=0$ for any $\bar{\nabla }$-geodesic $\gamma $, where $\bar{\nabla }$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $.
References:
[1] Berndt, J. and Vanhecke, L.: Two natural generalizations of locally symmetric spaces. Diff. Geom. Appl. 2 (1992), 57-80. MR 1244456
[2] Blair, D. E.: Contact manifolds in Riemannian geometry. Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New-York. 509 (1976), . MR 0467588 | Zbl 0319.53026
[3] Blair, D. E., Koufogiorgos, T., and Sharma, R.: A classification of 3-dimensional contact metric manifolds with $Q\phi =\phi Q$. Kodai Math.J. 13 (1990), 391-401. MR 1078554
[4] Blair, D. E. and Sharma, R.: Three-dimensional locally symmetric contact metric manifolds. to appear in Boll.Un.Mat.Ital.. MR 1083268
[5] Blair, D. E. and Vanhecke, L.: Symmetries and $\phi $-symmetric spaces. Tôhoku Math.J. 39 (1987), 373-383. MR 0902576
[6] Cartan, E.: Lecons sur la géométrie des espaces de Riemann, 2nd éd. Gauthier-Villars, Paris (1946). MR 0020842
[7] Cho, J. T.: On some classes of almost contact metric manifolds. Tsukuba J. Math. 19 (1995), 201-217. MR 1346762 | Zbl 0835.53054
[8] Cho, J. T.: On some classes of contact metric manifolds. Rend.Circ.Mat. Palermo XLIII (1994), 141–160. MR 1305332 | Zbl 0817.53019
[9] Cho, J. T.: Generalizations of locally symmetric spaces and locally $\phi $-symmetric spaces. Niigata Univ. Doctorial Thesis (1994), .
[10] Olszak, Z.: On contact metric manifolds. Tôhoku Math. J. 31 (1979), . MR 0538923 | Zbl 0397.53026
[11] Takahashi, T.: Sasakian $\phi $-symmetric spaces. Tôhoku Math. J. 29 (1977), 91-113. MR 0440472
[12] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan J. Math. 2 (1976), 131-190. MR 0589931 | Zbl 0346.32010
[13] Tanno, S.: Ricci curvature of contact Riemannian manifolds. Tôhoku Math. J. 40 (1988), 441-448. MR 0957055
[14] Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314 (1989), 349-379. MR 1000553 | Zbl 0677.53043
[15] Tricerri, F. and Vanhecke, L.: Homogeneous structures on Riemannian manifolds. London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, London (1983), . MR 0712664
Partner of
EuDML logo