[1] Berndt, J. and Vanhecke, L.:
Two natural generalizations of locally symmetric spaces. Diff. Geom. Appl. 2 (1992), 57-80.
MR 1244456
[2] Blair, D. E.:
Contact manifolds in Riemannian geometry. Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New-York. 509 (1976), .
MR 0467588 |
Zbl 0319.53026
[3] Blair, D. E., Koufogiorgos, T., and Sharma, R.:
A classification of 3-dimensional contact metric manifolds with $Q\phi =\phi Q$. Kodai Math.J. 13 (1990), 391-401.
MR 1078554
[4] Blair, D. E. and Sharma, R.:
Three-dimensional locally symmetric contact metric manifolds. to appear in Boll.Un.Mat.Ital..
MR 1083268
[5] Blair, D. E. and Vanhecke, L.:
Symmetries and $\phi $-symmetric spaces. Tôhoku Math.J. 39 (1987), 373-383.
MR 0902576
[6] Cartan, E.:
Lecons sur la géométrie des espaces de Riemann, 2nd éd. Gauthier-Villars, Paris (1946).
MR 0020842
[7] Cho, J. T.:
On some classes of almost contact metric manifolds. Tsukuba J. Math. 19 (1995), 201-217.
MR 1346762 |
Zbl 0835.53054
[8] Cho, J. T.:
On some classes of contact metric manifolds. Rend.Circ.Mat. Palermo XLIII (1994), 141–160.
MR 1305332 |
Zbl 0817.53019
[9] Cho, J. T.: Generalizations of locally symmetric spaces and locally $\phi $-symmetric spaces. Niigata Univ. Doctorial Thesis (1994), .
[11] Takahashi, T.:
Sasakian $\phi $-symmetric spaces. Tôhoku Math. J. 29 (1977), 91-113.
MR 0440472
[12] Tanaka, N.:
On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan J. Math. 2 (1976), 131-190.
MR 0589931 |
Zbl 0346.32010
[13] Tanno, S.:
Ricci curvature of contact Riemannian manifolds. Tôhoku Math. J. 40 (1988), 441-448.
MR 0957055
[14] Tanno, S.:
Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314 (1989), 349-379.
MR 1000553 |
Zbl 0677.53043
[15] Tricerri, F. and Vanhecke, L.:
Homogeneous structures on Riemannian manifolds. London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, London (1983), .
MR 0712664