Article
Keywords:
semi-holonomic 3-jet; natural transformation
Summary:
Let $\bar{J}^3$ be the functor of semi-holonomic $3$-jets and $\bar{J}^{3,2}$ be the functor of those semi-holonomic $3$-jets, which are holonomic in the second order. We deduce that the only natural transformations $\bar{J}^3 \rightarrow \bar{J}^3$ are the identity and the contraction. Then we determine explicitely all natural transformations $\bar{J}^{3,2}\rightarrow \bar{J}^{3,2}$, which form two $5$-parameter families.
References:
[1] Ehresmann, C.:
Extension du calcul des jets aux jets non-holonomes. C.R.Acad. Sci. Paris, 239 (1954), 1762-1764.
MR 0066734 |
Zbl 0057.15603
[2] Kolř, I.:
The contact of spaces with connection. J. Differential Geometry 7 (1972), 563-570.
MR 0415660
[3] Kolř, I., Michor, P., Slov k, J.:
Natural Operations in Differential Geometry. Springer-Verlag, 1993.
MR 1202431
[4] Kolř, I., Vosmansk , G.:
Natural operations with second order jets. Rendiconti del Circolo Matematico di Palermo, Serie II, n. 14 (1987), 179-186.
MR 0920854
[5] Kolř, I., Vosmansk , G.:
Natural transformations of higher order tangent bundles and jet spaces. Čas. pěst. mat. 114 (1989), 181-186.
MR 1063764