[1] Bálint, V.:
On a certain class of incidence structures. Práce a štúdie Vysokej Školy Dopravnej v Žiline 2 (1979), 97-106 (In Slovak; summary in English, German and Russian).
MR 0675948
[2] Bálint, V., Bálintová, A.:
On the number of circles determined by $n$ points in Euclidean plane. Acta Mathematica Hungarica 63 (3-4) (1994), 283-289.
MR 1261471
[3] Bálint, V., Lauron, Ph.:
Some inequalities for the $(r,q)$-structures. STUDIES OF UNIVERSITY OF TRANSPORT AND COMMUNICATIONS IN ŽILINA, Mathematical - Physical Series, Volume 10 (1995), 3-10.
MR 1643894
[4] Beck, J.:
On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorical geometry. Combinatorica 3 (3-4) (1983), 281-297.
MR 0729781
[5] Borwein, P., Moser, W. O. J.:
A survey of Sylvester’s problem and its generalizations. Aequa. Math. 40 (1990), 111-135.
MR 1069788
[6] de Bruijn, N. G., Erdős, P.:
On a combinatorical problem. Nederl. Acad. Wetensch. 51 (1948), 1277-1279.
MR 0028289
[7] Csima, J., Sawyer, E. T.:
A short proof that there exist $6n/13$ ordinary points. Discrete and Computational Geometry 9 (1993), no. 2, 187-202.
MR 1194036
[8] Elekes, G.:
$n$ points in the plane can determine $n^{3\over 2}$ unit circles. Combinatorica 4 (1984), 131.
MR 0771719 |
Zbl 0561.52009
[9] Elliott, P. D. T. A.:
On the number of circles determined by $n$ points. Acta Math. Acad. Sci. Hung. 18 (3-4) (1967), 181-188.
MR 0213939 |
Zbl 0163.14701
[10] Erdős, P.:
Néhány geometriai problémáról. Mat. Lapok 8 (1957), 86-92.
MR 0098072
[11] Erdős, P.:
On some metric and combinatorical geometric problems. Discrete Math. 60 (1986), 147-153.
MR 0852104
[12] Hansen, S.: Contributions to the Sylvester-Gallai-Theory. Doctoral dissertation, University of Copenhagen, 1981.
[13] Harborth, H., Mengersen, I.:
Point sets with many unit circles. Discrete Math. 60 (1985), 193-197.
MR 0852106
[14] Harborth, H.:
Einheitskreise in ebenen Punktmengen. 3.Kolloquium über Diskrete Geometrie, Institut für Mathematik der Universität Salzburg (1985), 163-168.
Zbl 0572.52020
[15] Jucovič, E.: Problem $24$. Combinatorical Structures and their Applications, New York-London-Paris, Gordon and Breach, 1970.
[16] Kelly, L. M., Moser, W. O. J.:
On the number of ordinary lines determined by $n$ points. Canad. J. Math. 10 (1958), 210-219.
MR 0097014
[17] Klee, V., Wagon, S.:
Old and New Unsolved Problems in Plane Geometry and Number Theory. Mathematical Assoc. Amer., Washington, DC, 1991.
MR 1133201
[18] Sylvester, J. J.: Mathematical Question $11851$. Educational Times 59 (1893), 98.