Article
Keywords:
identric mean; logarithmic mean; arithmetic-geometric; mean of Gauss; inequalities
Summary:
In this paper we obtain certain refinements (and new proofs) for inequalities involving means, results attributed to Carlson; Leach and Sholander; Alzer; Sndor; and Vamanamurthy and Vuorinen.
References:
[2] Alzer, H.:
Two inequalities for means. C. R. Math. Rep. Acad. Sci. Canada 9 (1987), 11-16.
MR 0873401 |
Zbl 0615.26015
[4] Leach, E. B., Sholander, M. C.:
Extended mean values II. J. Math. Anal. Appl. 92 (1983), 207-223.
MR 0694172
[5] Pittinger, A. O.:
Inequalities between arithmetic and logarithmic means. Univ. Beograd Publ. Elektr. Fak. Ser. Mat. Fiz 680 (1980), 15-18.
MR 0623217
[6] S ndor, J.:
On the identric and logarithmic means. Aequationes Math. 40 (1990), 261-270.
MR 1069798
[7] S ndor, J.:
A note on some inequalities for means. Arch. Math. (Basel) 56 (1991), 471-473.
MR 1100572
[8] S ndor, J.:
On certain identities for means. Studia Univ. Babes-Bolyai (Cluj) 38 (1993), 7-14.
MR 1434724
[9] Seiffert, H.-J.: Comment to Problem 1365. Math. Mag. 65 (1992), 356.
[10] Stolarsky, K. B.:
The power and generalized logarithmic means. Amer. Math. Monthly 87 (1980), 545-548.
MR 0600913 |
Zbl 0455.26008
[11] Vamanamurthy, M. K., Vuorinen, M.:
Inequalities for means. J. Math. Anal. Appl. 183 (1994), 155-166.
MR 1273438