Previous |  Up |  Next

Article

Summary:
The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^{-1})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac{p-1}{8}$, $3\frac{p-1}{8}$, $5\frac{p-1}{8}$, $7\frac{p-1}{8}$.
References:
[1] Buhler, J. P., Crandall, R. E. and Sompolski, R. W.: Irregular primes to one million. Math. Comp. 59 (1992), no. 200, 717-722. MR 1134717
[2] Darmon, H.: Note on a polynomial of Emma Lehmer. Math. Comp. 56 (1991), no. 44, 795-800. MR 1068821 | Zbl 0732.11056
[3] Gras, M. N.: Sur les corps cubiques cycliques dont l’anneau des entiers est monogene. Ann. Sci. Univ. Besancon Math.(3), no. 6, 1-26. MR 0352043 | Zbl 0287.12010
[4] Gras, M. N.: Table numerique du nombre de classes et de unites des extensions cycliques reelles de degre 4 de $Q$. Publ. Math. Besancon, fasc. 2 (1977/1978), 1-26, 1-53. MR 0526779
[5] Gras, M. N.: Familles d’unites dans les extensions cycliques reelles de degre 6 de $Q$. Publ. Math. Besancon (1984/1985-1985/1986). MR 0898667
[6] Gras, M. N.: Special units in real cyclic sextic fields. Math.Comp. 48 (1987), 341-355. MR 0866107 | Zbl 0617.12006
[7] Jakubec, S.: The congruence for Gauss’s period. Journal of Number Theory 48 (1994), 36-45. MR 1284872
[8] Jakubec, S.: On the Vandiver’s conjecture. Abh. Math. Sem. Univ. Hamburg 64 (1994), 105-124. MR 1292720
[9] Lazarus, A. J.: Gaussian periods and units in certain cyclic fields. Proceedings of AMS 115, 961 - 968. MR 1093600 | Zbl 0760.11032
[10] Lecxacheux, O.: Unites d’une famille de corps cycliques reeles de degre 6 lies a la coube modulaire $X_1(13)$. J. Number Theory 31 (1989), 54-63. MR 0978099
[11] Lehmer, E.: Connection between Gaussian periods and cyclic units. Math. Comp. 50 (1988), 535-541. MR 0929551 | Zbl 0652.12004
[12] Metsankyla, T.: A class number congruence for cyclotomic fields and their subfields. Acta Arith. 23 (1973), 107-116. MR 0332720
[13] Moser, C.: Nombre de classes d’une extension cyclique reelle de $\mathbb{Q}$, de degre 4 ou 6 et de conducteur premier. Math. Nachr. 102 (1981), 45-52. MR 0642140
[14] Moser, C., Payan, J. J.: Majoration du nombre de classes d’un corps cubique cyclique de conducteur premier. J.Math. Soc. Japan 33 (1981), 701-706. MR 0630633
[15] Schoof, R., Washington, L. C.: Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comp. 50 (1988), 543-556. MR 0929552
[16] Shanks, D.: The simplest cubic fields. Math. Comp. 28 (1974), 1137-1152. MR 0352049 | Zbl 0307.12005
[17] Shen, Y. Y.: Unit groups and class numbers of real cyclic fields. TAMS 326 (1991), 179-209. MR 1031243
[18] Washington, L. C.: Introduction to Cyclotomic Fields. Springer-Verlag 83. MR 1421575 | Zbl 0966.11047
Partner of
EuDML logo