Previous |  Up |  Next

Article

Keywords:
oblique derivative; elliptic problem; indefinite weight; eigenvalues; principal vectors
Summary:
In this paper we derive results concerning the angular distrubition of the eigenvalues and the completeness of the principal vectors in certain function spaces for an oblique derivative problem involving an indefinite weight function for a second order elliptic operator defined in a bounded region.
References:
[1] Adams, R. A.: Sobolev Spaces. Academic, New York (1975). MR 0450957 | Zbl 0314.46030
[2] Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math. 15 (1962), 119-147. MR 0147774 | Zbl 0109.32701
[3] Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton, N.J. (1965). MR 0178246 | Zbl 0142.37401
[4] Agmon, S., Douglis, A. and Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12 (1959), 623-727. MR 0125307
[5] Agranovitch, M. S., Vishik, M. I.: Elliptic problems with a parameter and parabolic problems of general type. Russian Math. Surveys 19 (1964), 53-157. MR 0192188
[6] Beals, R.: Indefinite Sturm–Liouville problems and half–range completeness. J. Differential Equations 56 (1985), 391-407. MR 0780497 | Zbl 0512.34017
[7] Bers, L., Schechter, M.: Elliptic Equations. In: Partial Differential Equations, Lectures in Appl. Math.III, Interscience, New York, 1964, 131-299. MR 0165224
[8] Bognár, J.: Indefinite Inner Product Spaces. Springer, New York, 1974. MR 0467261
[9] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw–Hill, New York, 1955. MR 0069338
[10] Faierman, M.: On the eigenvalues of nonselfadjoint problems involving indefinite weights. Math. Ann. 282 (1988), 369-377. MR 0967019 | Zbl 0629.34024
[11] Faierman, M.: Elliptic problems involving an indefinite weight. Trans. Amer. Math. Soc. 320 (1990), 253–279. MR 0962280 | Zbl 0721.35051
[12] Faierman, M.: Non–selfadjoint elliptic problems involving an indefinite weight. Comm. Partial Differential Equations 15 (1990), 939–982. MR 1070235 | Zbl 0721.35051
[13] Faierman, M.: An oblique derivative problem involving an indefinite weight. Dekker, New York, 1991, 147-154, In: Differential Equations, Lecture Notes in Pure and Appl. Math. 127. MR 1096750 | Zbl 0865.35096
[14] Faierman, M.: An elliptic boundary value problem in a half–space. Boll. Un. Mat. Ital. 5-B (1991), 905-937. MR 1146780 | Zbl 0768.35021
[15] Faierman, M.: Generalized parabolic cylinder functions. Asymptotic Anal. 5 (1992), 517-531. MR 1169356 | Zbl 0753.34041
[16] Faierman, M.: A priori bounds for solutions of an elliptic equation. Proc. Roy. Soc. Edinburgh (to appear). MR 1200196 | Zbl 0791.35013
[17] Fleckinger, J., Lapidus, M. L.: Eigenvalues of elliptic boundary value problems with an indefinite weight function. Trans. Amer. Math. Soc. 295 (1986), 305-324. MR 0831201
[18] Fleckinger, J., Lapidus, M. L.: Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights. Arch. Rational Mech. Anal. 98 (1987), 329-356. MR 0872751
[19] Hess, P.: On the relative completeness of the generalized eigenvectors of elliptic eigenvalue problems with indefinite weight functions. Math. Ann. 270 (1985), 467-475. MR 0774371 | Zbl 0572.47006
[20] Hess, P.: On the asymptotic distribution of eigenvalues of some non–selfadjoint problems. Bull. London Math. Soc. 18 (1986), 181-184. MR 0818823
[21] Hess, P.: On the spectrum of elliptic operators with respect to indefinite weights. Linear Algebra Appl. 84 (1986), 99-109. MR 0872278 | Zbl 0621.47026
[22] Hörmander, L.: Uniqueness theorems for second order elliptic differential equations. Comm. Partial Differential Equations 8 (1983), 21-64. MR 0686819
[23] Kato, T.: Perturbation Theory for Linear Operators. 2nd edn., Springer, New York, 1976. MR 0407617 | Zbl 0836.47009
[24] Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Springer, New York, 1972. MR 0350177
[25] Markus, A. S.: Introduction to the Spectral Theory of Polynomial Operator Pencils. Amer. Math. Soc., Providence, R.I. (1988). MR 0971506 | Zbl 0678.47005
[26] Schechter, M.: General boundary value problems for elliptic partial differential equations. Comm. Pure Appl. Math. 12 (1959), 457-482. MR 0125323 | Zbl 0087.30204
[27] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis. 4th edn., University Press, Cambridge, 1965. MR 1424469
Partner of
EuDML logo