Previous |  Up |  Next

Article

Keywords:
property (B); comparison theorem; deviating argument..
Summary:
The aim of this paper is to deduce oscillatory and asymptotic behavior of delay differential equation \[ L_nu(t)-p(t)u(\tau (t))= 0, \] from the oscillation of a set of the first order delay equations.
References:
[1] Chanturia, T. A. , Koplatadze, R. G.: On the oscillatory and monotone solutions of the first order differential equations with deviating argument. Dif. Uravnenija 18 (1982), 1463–1465. (Russian) MR 0671174
[2] Elbert, A., Stavroulakis, I. P.: Oscillations of the first order differential equations with deviating arguments. Univ of Ioannina, Technical report No 172 Math (1990), 1–18.
[3] Györi, I., Ladas, G.: Oscillation theory of delay differential equations. Clarendon press, Oxford, 1991. MR 1168471
[4] Kiguradze, T. I.: On the oscillation of solutions of the equation $d^mu/dt^m + a(t)|u|^n sign\,u = 0$. Mat. Sb 65 (1964), 172–187. (Russian) MR 0173060 | Zbl 0135.14302
[5] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3 (1981), 509–532. MR 0620288
[6] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation theory of differential equations with deviating arguments. Dekker, New York, 1987. MR 1017244
[7] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations. Trans. Amer. Math. Soc 189 (1974), 319–327. MR 0330632 | Zbl 0289.34051
Partner of
EuDML logo