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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 207 { 213PROPERTY (B) OF DIFFERENTIAL EQUATIONSWITH DEVIATING ARGUMENTJozef D�zurinaAbstract. The aim of this paper is to deduce oscillatory and asymptotic behaviorof delay di�erential equationLnu(t)� p(t)u(�(t)) = 0;from the oscillation of a set of the �rst order delay equations.In this paper we are concerned with the oscillatory and asymptotic behavior ofsolutions of the di�erential equations of the form(1) Lnu(t)� p(t)u(� (t)) = 0;where n � 3 and Ln denotes the general disconjugate di�erential operator of theform(2) Ln = 1rn(t) ddt 1rn�1(t) ddt � � � ddt 1r1(t) ddt �r0(t) :It is always assumed that ri(t), 0 � i � n, p(t) and � (t) are continuous on [t0;1),p(t) > 0, � (t) < t, � (t)!1 as t!1 and(3) Z 1 ri(s) ds =1 for 1 � i � n� 1:The operator Ln satisfying (3) is said to be in canonical form. It is well-known thatany di�erential operator of the form (2) can always be represented in a canonicalform in an essentially unique way (see Trench [7]). In the sequel we will assumethat the operator Ln is in canonical form.1991 Mathematics Subject Classi�cation : Primary 34C10.Key words and phrases: property (B), comparison theorem, deviating argument...Received June 2, 1993.



208 JOZEF D�ZURINAWe introduce the following notation:L0u(t) = u(t)r0(t) ;Liu(t) = 1ri(t) ddtLi�1u(t); 1 � i � n:The domain D(Ln) of Ln is de�ned to be the set of all functions u : [Tu;1)! Rsuch that Liu(t), 0 � i � n exist and are continuous on [Tu;1). A nontrivialsolution of (1) is called oscillatory if it has arbitrarily large zeros; otherwise it iscalled nonoscillatory.If u(t) is a nonoscillatory solution of (1) then according to a generalization of alemma of Kiguradze [4, Lemma 3] there is an integer `, 0 � ` � n such that ` � n(mod 2) and(4) u(t)Liu(t) > 0; 0 � i � `;(�1)i�`u(t)Liu(t) > 0; ` � i � nfor all su�ciently large t. A function u(t) satisfying (4) is said to be a function ofdegree `. The set of all nonoscillatory solutions of degree ` of (1) is denoted by N`.If we denote by N the set of all nonoscillatory solution of (1), thenN = N1 [N3 [ � � � [Nn if n is odd,and N = N0 [N2 [ � � � [Nn if n is even.Following Kiguradze, we say that equation (1) has property (B) if for n evenN = N0 [Nn and for n odd N = Nn.In a recent paper [5] Kusano and Naito has presented a useful comparisonprinciple which enables us to deduce property (B) of a delay equation of theform (1) from that of ordinary di�erential equationLnu(t) � p(��1(t))rn(��1(t))� 0(��1(t))rn(t) u(t) = 0;where ��1(t) is the inverse function to � (t). The objectives of this paper is toshow that this comparison theorem may fail and then it is a good idea to compareequation (1) with a set of the �rst order delay equations(Ei) y0(t) + qi(t)y(� (t)) = 0;We present the relationship between property (B) of equation (1) and oscillationof equations (Ei).We begin by formulating a preparatory result (Lemma 1) which can be foundin [5] and is needed in the sequel.



PROPERTY (B) OF DIFFERENTIAL EQUATIONS 209Let ik 2 f1; 2; � � � ; n� 1g, 1 6 k 6 n � 1 and t; s 2 [t0;1), we de�neI0 = 1;Ik(t; s; rik; � � � ; ri1) = Z ts rik(x)Ik�1(x; s; rik�1 ; � � � ; ri1) dx:It is easy to verify that for 1 6 k 6 n� 1(5) Ik(t; s; rik; � � � ; ri1) = (�1)kIk(s; t; ri1; � � � ; rik);Ik(t; s; rik; � � � ; ri1) = Z ts ri1(x)Ik�1(t; x; rik; � � � ; ri2) dx:Lemma 1. If u 2 D(Ln) then the following formula holds for 0 6 i 6 k 6 n � 1and t; s 2 [Tu;1):Liu(t) = kXj=i(�1)j�iLju(s)Ij�i(s; t; rj; � � � ; ri+1)+ (�1)k�i+1 Z st Ik�i(x; t; rk; � � � ; ri+1) rk+1(x)Lk+1u(x) dx:(6)This lemma is a generalization of Taylor's formula. The proof is immediate.For convenience and further references we make use the following notations:qi(t) = ri+1(t) Z 1t rn(s)r0(� (s))p(s)In�i�2(s; t; rn�1; � � � ; ri+2)� Z �(t)t1 Ii�1(� (s); x; r1; � � � ; ri�1) ri(x) dxds;for su�ciently large t1 with � (t) > t1 and i = 1; 2; � � � ; n� 2.The following theorem presents an important relationship between equation (1)and corresponding �rst order di�erential inequalities.Lemma 2. Let(7) � (t) be nondecreasing.Assume that for ` 2 f1; 2; � � � ; n�2g, such that n+ ` is even the linear di�erentialinequalities( eE`) y0(t) + q`(t)y(� (t)) 6 0have no eventually positive solutions. Then equation (1) has property (B).Proof. For the sake of contradiction we assume that (1) has a nonoscillatorysolution, which belongs to the class N`,where ` 2 f1; 2; � � � ; n�2;g, such that n+`



210 JOZEF D�ZURINAis even. We may assume that u(t) is positive. Then there exists a t1 such that (4)holds for all t > t1.Putting i = ` + 1, k = n � 1 and s > t > t1 in (6), we have in view of (4) and(5) �L`+1u(t) > Z st rn(x)In�`�2(x; t; rn�1; � � � ; r`+2)Lnu(x) dx;letting s!1 and using (1), we obtain�L`+1u(t) > Z 1t rn(x)In�`�2(x; t; rn�1; � � � ; r`+2) p(x)u(� (x)) dx;(8)for t > t1. Now by Lemma 1, with i = 0, k = ` � 1 and t > s = t1 taking (4)and (5) into account, one gets(9) L0u(t) > Z tt1 I`�1(t; x; r1; � � � ; r`�1) r`(x)L`u(x) dxfor t > t1. Combining (8) with (9) we have with respect to (7)�L`+1u(t) > Z 1t rn(s)p(s)r0(� (s))In�`�2(s; t; rn�1; � � � ; r`+2)� Z �(s)t1 I`�1(� (s); x; r1; � � � ; r`�1) r`(x)L`u(x) dxds> Z 1t rn(s)p(s)r0(� (s))In�`�2(s; t; rn�1; � � � ; r`+2)� Z �(t)t1 I`�1(� (s); x; r1; � � � ; r`�1) r`(x)L`u(x) dxds:Since L`u(t) is decreasing (` > 1) we obtain from the last inequality(10) �L`+1u(t) > L`(� (t)) q`(t)r`+1(t) ;for t > t1. Let y(t) be given by y(t) � L`u(t);then y(t) > 0 on [t1;1) and y0(t) = r`+1(t)L`+1u(t) and by (10) we havey0(t) + q`(t)y(� (t)) 6 0; t > t1:which contradicts with the fact that di�erential inequality ( eE`) has no positivesolutions.



PROPERTY (B) OF DIFFERENTIAL EQUATIONS 211Theorem 1. Let (7) hold. De�ne a function f = f(�) for 0 6 � 6 1= e byf e��f = 1; 1 6 f 6 e :Assume that for ` 2 f1; 2; � � � ; n� 2g such that n+ ` is even eitherd = lim inft!1 Z t�(t) q`(s) ds > 1e ;(11)or c = lim supt!1 Z t�(t) q`(s) ds > 1;(12)or when 0 < d 6 1= e and c 6 1 the folowing condition holdf(d) �1�p1� c�2 > 1:(13)Then equation (1) has property (B).Proof. It is known (see e.g. [2, Corollary 4] or [1, Theorem 1] or [6, Theorem 2.1.1])that conditions (11) or (12) or (13) are su�cient for di�erential inequalities ( eEi)to have no positive solutions. Our assertion follows by Lemma 2.Lemma 3. Suppose that q(t) 2 C([t0;1)) is positive. Equationy0(t) + q(t)y(� (t)) = 0has a positive solution if and only if the di�erential inequalityy0(t) + q(t)y(� (t)) 6 0has a positive solution.This lemma can be found in [3, Corollary 3.2.2].Theorem 2. Let (7) hold. Assume that for ` 2 f1; 2; � � � ; n� 2g such that n+ `is even the delay di�erential equations(E`) y0(t) + q`(t)y(� (t)) = 0are oscillatory. Then equation (1) has property (B).Proof. This theorem immediately follows from Lemma 2 and Lemma 3.Example 1. Let us consider the third order equation(14) y000(t)� at2 3pty( 3pt) = 0; a > 0; and t > 1;



212 JOZEF D�ZURINAWe have � (t) = 3pt, p(t) = at2 3pt and q1(t) = (� (t)� t1)Z 1t p(s) ds: By Theorem 1equation (14) has property (B) for all a > 0. On the other hand, by the above-mentioned result of Kusano and Naito one gets that (14) has property (B) if theordinary equation without delay(15) y000(t)� 3at5 y(t) = 0has property (B). But as (15) has not property (B) criterion of Kusano and Naitofails for (14).We can extend our previous results to more general nonlinear di�erential equa-tion of the form(16) Lnu(t)� f(t; u(� (t))) = 0;where Ln and � are the same as in (1) and f is a continuos function such thatf : [t0;1)�R! R and xf(t; x) > 0 for x 6= 0.Lemma 4. Let all conditions of Lemma 2 are satis�ed. Moreover we assume that(17) jf(t; x)j > p(t)jxj for t 2 [t0;1) and x 6= 0:Then equation (16) has property (B).Proof. By Lemma 2 equation (1) has property (B). Applying the well knowncomparison theorem of Kusano and Naito [5, Theorem 1] one gets that condition(17) guarantees property (B) of (16).Theorem 3. Let all conditions of Theorem 2 hold and (17) is satis�ed. Thenequation (16) has property (B).Proof. The assertion of Theorem 3 follows by Theorem 2 and Theorem 1 in [5].References[1] Chanturia, T. A. , Koplatadze, R. G., On the oscillatory and monotone solutions of the �rstorder di�erential equations with deviating argument, Dif. Uravnenija 18 (1982), 1463{1465.(Russian)[2] Elbert, A., Stavroulakis, I. P., Oscillations of the �rst order di�erential equations with de-viating arguments, Univ of Ioannina, Technical report No 172 Math (1990), 1{18.[3] Gy�ori, I., Ladas, G., Oscillation theory of delay di�erential equations, Clarendon press, Ox-ford, 1991.[4] Kiguradze,T. I.,On the oscillation of solutions of the equation dmu=dtm+a(t)jujnsign u = 0,Mat. Sb 65 (1964), 172{187. (Russian)



PROPERTY (B) OF DIFFERENTIAL EQUATIONS 213[5] Kusano, T., Naito, M., Comparison theorems for functional di�erential equations with devi-ating arguments, J. Math. Soc. Japan 3 (1981), 509{532.[6] Ladde, G. S., Lakshmikantham,V., Zhang, B. G., Oscillation theory of di�erential equationswith deviating arguments, Dekker, New York, 1987.[7] Trench, W. F., Canonical forms and principal systems for general disconjugate equations,Trans. Amer. Math. Soc 189 (1974), 319{327.Jozef D�zurinaDepartment of Mathematical Analysis�Safarik UniversityJesenn�a 5041 54 Ko�sice, SLOVAKIAE-mail: Dzurina@turing.upjs.sk
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