Previous |  Up |  Next

Article

Keywords:
commutators; flows; vector fields
Summary:
The well known formula $[X,Y]=\tfrac{1}{2}\tfrac{\partial ^2}{\partial t^2}|_0 (^Y_{-t}ø^X_{-t}ø^Y_tø^X_t)$ for vector fields $X$, $Y$ is generalized to arbitrary bracket expressions and arbitrary curves of local diffeomorphisms.
References:
[FK] Frölicher, A., Kriegl, A.: Linear spaces and differentiation theory. Pure and Applied Mathematics, J. Wiley, Chichester, 1988. MR 0961256
[KMS] Kolář, I., Michor, P. W., Slovák, J.: Natural operators in differential geometry. to appear, Springer-Verlag. MR 1202431
[KMa] Kriegl, A., Michor, P. W.: A convenient setting for real analytic mappings. Acta Mathematica 165 (1990), 105–159. MR 1064579
[KMb] Kriegl, A., Michor, P. W.: Aspects of the theory of infinite dimensional manifolds. Differential Geometry and Applications 1(1) (1991). MR 1244442
[KMc] Kriegl, A., Michor, P. W.: Foundations of Global Analysis. A book in the early stages of preparation.
[KN] Kriegl, A., Nel, L. D.: A convenient setting for holomorphy. Cahiers Top. Géo. Diff. 26 (1985), 273–309. MR 0796352
[M] Mauhart, M.: Iterierte Lie Ableitungen und Integrabilität. Diplomarbeit, Universität Wien, 1990.
[T] Terng, Chu Lian: Natural vector bundles and natural differential operators. American J. of Math. 100 (1978), 775–828. MR 0509074
Partner of
EuDML logo