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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 229 { 236COMMUTATORS OF FLOWS AND FIELDSMarkus Mauhart and Peter W. Michor1Abstract. The well known formula [X; Y ] = 12 @2@t2 j0(FlY�t �FlX�t �FlYt �FlXt ) forvector �elds X, Y is generalized to arbitrary bracket expressions and arbitrarycurves of local di�eomorphisms.LetM be a smoothmanifold. It is well known that for vector �elds X;Y 2 X(M )we have 0 = @@t��0 (FlY�t �FlX�t �FlYt �FlXt );[X;Y ] = 12 @2@t2 j0(FlY�t �FlX�t �FlYt �FlXt ):We give the following generalization:1. Theorem. Let M be a manifold, let 'i : R� M � U'i ! M be smoothmappings for i = 1; : : : ; k where each U'i is an open neighborhood of f0g � Min R�M , such that each 'it is a di�eomorphism on its domain, 'i0 = IdM , and@@t��0'it = Xi 2 X(M ). We put ['it; 'jt ] := ('jt )�1 � ('it)�1 � 'jt � 'it: Then for eachformal bracket expression B of length k we have0 = @`@t` j0B('1t ; : : : ; 'kt ) for 1 � ` < k;B(X1; : : : ; Xk) = 1k! @k@tk j0B('1t ; : : : ; 'kt ) 2 X(M )in the sense explained in 3 below.In fact this theorem is a special case of the more general theorem 10 below. Thesomewhat unusual choice of the commutator of 
ows is explained by the fact thatthe bracket on the Lie algebra of the di�eomorphism group is the negative of theusual Lie bracket of vector �elds.1991 Mathematics Subject Classi�cation : 58F25.Key words and phrases: commutators, 
ows, vector �elds.Received October 14, 1991.1Supported by Project P 7724 PHY of `Fonds zur F�orderung der wissenschaftlichen Forschung'229



230 MARKUS MAUHART AND PETER W. MICHOR2. Lemma. Let c : R ! M be a smooth curve. If c(0) = x 2 M , c0(0) =0; : : : ; c(k�1)(0) = 0, then c(k)(0) is a well de�ned tangent vector in TxM which isgiven by the derivation f 7! (f � c)(k)(0) at x.Proof. We have((f:g) � c)(k)(0) = ((f � c):(g � c))(k)(0) = kXj=0 �kj�(f � c)(j)(0)(g � c)(k�j)(0)= (f � c)(k)(0)g(x) + f(x)(g � c)(k)(0);since all other summands vanish: (f � c)(j)(0) = 0 for 1 � j < k. �3. Curves of local di�eomorphisms. Let ' : R�M � U' !M be a smoothmapping where U' is an open neighborhood of f0g�M in R�M , such that each't is a di�eomorphism on its domain and '0 = IdM . We say that 't is a curve oflocal di�eomorphisms though IdM .From lemma 2 we see that if @j@tj j0't = 0 for all 1 � j < k, then X := 1k! @k@tk j0'tis a well de�ned vector �eld on M . We say that X is the �rst non-vanishingderivative at 0 of the curve 't of local di�eomorphisms. We may paraphrase thisas (@kt j0'�t )f = k!LXf .4. Natural vector bundles. See [KMS, 6.14]. LetMfm denote the category ofall smooth m-dimensional manifolds and local di�eomorphisms between them. Avector bundle functor or natural vector bundle is a functor F which associates avector bundle (F (M ); pM ;M ) to each manifoldM and a vector bundle homomor-phism F (M ) F (f)����! F (N )pM??y ??ypNM ����!f Nto each f :M ! N inMfm, which covers f and is �ber wise a linear isomorphism.If f is the embedding of an open subset of N then this diagram turns out to be apullback diagram.We also point out that f 7! F (f) maps smoothly parameterizedfamilies to smoothly parameterized families, see [KMS, 14.8]. Assuming this prop-erty all vector bundle functors were classi�ed by [T]: They correspond to linearrepresentations of higher jet groups, they are associated vector bundles to higherorder frame bundles, see also [KMS, 14.8].Examples of vector bundle functors are tangent and cotangent bundles, tensorbundles, and also the trivial bundle M �Rwhich will give us theorem 1.5. Pullback of sections. Let F be a vector bundle functor onMfm as describedin 4. Let M be an m-manifold and let 't be a curve of local di�eomorphismsthrough IdM on M . Then the 
ow 't, for �xed t, is a di�eomorphism de�ned on



COMMUTATORS OF FLOWS AND FIELDS 231an open subset U't of M . The mappingF (M )  ���� F (U't) F ('t)����! F (M )pM??y ??y ??ypMM  ���� U't ����!'t Mis then a vector bundle isomorphism.We consider a section s 2 C1(F (M )) of the vector bundle (F (M ); pM ;M ) andwe de�ne for t 2 R '�t s := F ('�1t ) � s � 't:This is a local section of the bundle F (M ). For each x 2M the value ('�t s)(x) 2F (M )x := p�1M (x) is de�ned, if t is small enough. So in the vector space F (M )xthe expression ddt j0('�t s)(x) makes sense and therefore the section ddt j0('t)�s isglobally de�ned and is an element of C1(F (M )). If 't = FlXt is the 
ow of avector �eld X on M this sectionLXs := ddt j0(FlXt )�sis called the Lie derivative of s along X. It satis�es LXLY �LY LX = L[X;Y ], see[KMS, 6.20].6. Lemma. Let 't be a smooth curve of local di�eomorphisms through IdM with�rst non-vanishing derivative k!X = @kt j0't. Then for any vector bundle functorF and for any section s 2 C1(F (M )) we have the �rst non-vanishing derivativek!LXs = @kt j0'�t s:Proof. This is again a local question, so let x 2 M . We choose a complete Rie-mannian metric on M and we denote by Uk the open ball with radius rk > 0and center x for this metric, and let let Uk be its closure. Since '0 = IdM wemay choose a chart (U; u : U ! Rm) of M with x 2 U and u(U ) = Rm, radiir0 > r1 > r2 > r3 > r4 > 0 and " > 0 such that the following hold: ' is de�nedand smooth on ((�2"; 2") � U0), '([�"; "]� U1) � U , '((�"; ") � U2) � U3, and'((�"; ") � U4) � U3. Let E be the set of all f 2 C1(U1; U ) such that f jU2 is adi�eomorphism onto its image, f(U2) � U3, and f(U4) � U3. Then via the linearisomorphism u� : C1(U1; U )! C1(U1;Rm) which we suppress from now on, theset E is an open subset of the Frech�et space C1(U1;Rm) for the compact C1-topology, since the closures Uk are compact for each rk > 0 by completeness ofthe metric.By cartesian closedness [FK, 4.4.13] or [KMb, 1.8] the curve �' : (�"; ") !C1(U1;Rm) is smooth and takes values in the open subset E .Claim. Let L(C1(F (M )); C1(F (U4))) denote the space of all bounded linearmappings between the convenient vector spaces indicated which are equipped



232 MARKUS MAUHART AND PETER W. MICHORwith the compact C1-topology, and let P : C1(U1;Rm) � E ! L(C1(F (M ));C1(F (U4))) be the mapping given by P (f)(s) = f�s = F (f�1) � s � f . Then P issmooth.First we check that P takes values in the space of bounded (i. e. smooth) linearmappings. We have to check that P (f) maps smooth curves in C1(F (M )) tosmooth curves in C1(F (U4)). A curve c : R ! C1(F (M )) is smooth if andonly if the canonically associated mapping �c : R� M ! F (M ) is smooth, see[KMa,7.7.2]. But clearly P (f)(ct)(x) = (F ((f jU2)�1jU3) � ct � f jU4)(x) is smoothin (t; x) 2 R� U4.Now we check that P itself is smooth, i.e. maps smooth curves in E to smoothcurves in L(C1(F (M )); C1(F (U4))). So let f : R! E � C1(U1;Rm) be smooth,by cartesian closedness this means that f̂ : R� U1 ! Rm is smooth. By the�nite dimensional implicit function theorem the mapping (t; x) 7! f�1t (x) is alsosmooth for (t; x) 2 R�U3. But then for each section s 2 C1(F (M )) the mapping(t; x) 7! (P (ft)s)(x) = (F ((ftjU2)�1jU3) � s � ftjU4)(x) is also smooth since Frespects smoothly parameterized families.By the smooth uniform boundedness principle [FK, remark on page 89, also4.4.7], see also [KMb, 1.7.2], the assignment t 7! P (ft) is smooth as a mapping(�"; ")! L(C1(F (M )); C1(F (U4)))if and only if the composition(�"; ")! L(C1(F (M )); C1(F (U4))) evs��! C1(F (U4))is smooth for each s 2 C1(F (M )). We have already checked this condition, so theclaim follows.Now the smooth curve �' takes values in E , so we may compute for 1 � ` � kas follows: @t̀ j0'�t s = @t̀ j0(evs �P � �')(t) = d(evs �P )('0)(@t̀ j0't) + 0since each other term contains a derivative at 0 of 't of order less than ` which is0, and thus we get @t̀ j0'�t s = 0 for ` < k and@kt j0'�t s = d(evs �P )(IdU2)(@kt j0't)= d(evs �P )(IdU2)(k!X) = k!d(evs �P )(IdU2)(@tj0FlXt )= k!@tj0(evs �P � FlX )(t) = k!@tj0(FlXt )�s = k!LXs: �7. Lemma. Let M be a smooth manifold and let F be a vector bundle functoron Mfm. Let 't,  t be curves of local di�eomorphisms through IdM and lets 2 C1(F (M )) be a section of the vector bundle F (M )!M . Then we have@kt j0('t �  t)�s = @kt j0( �t'�t )s = kXj=0 �kj�(@jt j0 �t )(@k�jt j0'�t )s:



COMMUTATORS OF FLOWS AND FIELDS 233Also the multinomial version of this formula holds:@kt j0('1t � : : : � 't̀)�s = Xj1+���+j`=k k!j1! : : :j`! (@j`t j0('t̀)�) : : : (@j1t j0('1t )�)s:Proof. We only prove the binomial version. The question is local on M , so let Ube an open neighborhood of some point x in M such that ' is de�ned and smoothon (�"; ") � U . From the claim in the proof of lemma 6 we know that t 7! '�t isam smooth curve in the convenient vector space L(C1(F (M )); C1(F (U ))) of allbounded linear mappings.Now let V � M be an open neighborhood of x such that  is de�ned on(�"; ")�V and  ((�"; ")�V ) � U . By the arguments just given the mapping t 7! �t is a smooth mapping (�"; ")! L(C1(F (U )); C1(F (V ))) also. CompositionL(C1(F (M )); C1(F (U )))� L(C1(F (U )); C1(F (V )))!! L(C1(F (M )); C1(F (V )))is smooth and bilinear, see [FK, 4.4.16] and we may just apply the Leibniz formulafor higher derivatives of bilinear expressions of functions. We evaluate �rst ats 2 C1(F (M )) and then at x 2M to obtain the formula �8. Lemma. Let 't be a curve of local di�eomorphisms through IdM with �rstnon-vanishing derivative k!X = @kt j0't. Then the inverse curve of local di�eomor-phisms '�1t has �rst non-vanishing derivative �k!X = @kt j0'�1t .Proof. For we have '�1t � 't = Id, so by lemma 7 we get for 1 � j � k0 = @jt j0('�1t � 't)f = jXi=0 �ji�(@itj0'�t )(@j�it ('�1t )�)f == @jt j0'�t ('�10 )�f + '�0@jt j0('�1t )�f;i.e. @jt j0'�t f = �@jt j0('�1t )�f as required. �9. Lemma. Let M be a manifold, let F be a vector bundle functor, let s be asmooth section of F (M ), let 't be a curve of local di�eomorphisms through IdMwith �rst non-vanishing derivative m!X = @mt j0't, and let  t be a curve of localdi�eomorphisms through IdM with �rst non-vanishing derivative n!Y = @nt j0 t.Then the curve of local sections ['t;  t]�s = ( �1t � '�1t �  t � 't)�s has �rstnon-vanishing derivative(m + n)!L[X;Y ]s = @m+nt j0['t;  t]�s:Proof. From lemmas 6 and 8 we have the following �rst non-vanishing derivativesm!LXs = @mt j0'�t s; n!LY s = @nt j0 �t s;(1) m!L�Xs = @mt j0('�1t )�s; n!L�Y s = @nt j0( �1t )�s:



234 MARKUS MAUHART AND PETER W. MICHORBy the multinomial version of lemma 7 we haveAN s : = @Nt j0( �1t � '�1t �  t � 't)�s= Xi+j+k+`=N N !i!j!k!`!(@itj0'�t )(@jt j0 �t )(@kt j0('�1t )�)(@t̀ j0( �1t )�)s:Let us suppose that 1 � n � m, the case m � n is similar. If N < n all summandsare 0. If N = n we have by lemma 8AN s = (@nt j0'�t )s + (@nt j0 �t )s + (@nt j0('�1t )�)s + (@nt j0( �1t )�)s = 0:If n < N � m we have, using again lemma 8ANs = Xj+`=N N !j!`!(@jt j0 �t )(@t̀ j0( �1t )�)s + �mN �(@mt j0'�t )s+ (@mt j0('�1t )�)s�= (@Nt j0( �1t �  t)�)s + 0 = 0:Now we come to the di�cult case m;n < N � m + n.ANs = @Nt j0( �1t � '�1t �  t)�s + �Nm�(@mt j0'�t )(@N�mt j0( �1t � '�1t �  t)�)s+ (@Nt j0'�t )s;(2)by lemma 7, since all other terms vanish, see (4) below. By lemma 7 again we get:@Nt j0( �1t � '�1t �  t)�s = Xj+k+`=N N !j!k!`! (@jt j0 �t )(@kt j0('�1t )�)(@t̀ j0( �1t )�)s= Xj+`=N �Nj �(@jt j0 �t )(@t̀ j0( �1t )�)s + �Nm�(@N�mt j0 �t )(@mt j0('�1t )�)s(3) + �Nm�(@mt j0('�1t )�)(@N�mt j0( �1t )�)s + @Nt j0('�1t )�s= 0 + �Nm�(@N�mt j0 �t )m!L�Xs+ �Nm�m!L�X(@N�mt j0( �1t )�)s+ @Nt j0('�1t )�s; using (1)= �Nm+n(m + n)!(LXLY � LYLX)s + @Nt j0('�1t )�s= �Nm+n(m + n)!L[X;Y ]s + @Nt j0('�1t )�sFrom the second expression in (3) one can also read o� that(4) @N�mt j0( �1t � '�1t �  t)�s = @N�mt j0('�1t )�s:If we put (3) and (4) into (2) we get, using lemmas 7 and 8 again, the �nal resultwhich proves lemma 9:ANs = �Nm+n(m + n)!L[X;Y ]s+ @Nt j0('�1t )�s+ �Nm�(@mt j0'�t )(@N�mt j0('�1t )�)s+ (@Nt j0'�t )s= �Nm+n(m + n)!L[X;Y ]s+ @Nt j0('�1t � 't)�s= �Nm+n(m + n)!L[X;Y ]s+ 0: �



COMMUTATORS OF FLOWS AND FIELDS 23510. Theorem. Let M be a manifold, let 'i be smooth curves of local di�eomor-phisms through IdM for i = 1; : : : ; j with non-vanishing �rst derivative @kit j0'it =ki!Xi 2 X(M ). Let F be a vector bundle functor and let s 2 C1(F (M )) be asection. Then for each formal bracket expression B of length j we have0 = @`@t` j0B('1t ; : : :'kt )�s for 1 � ` < k;LB(X1;:::;Xk)s = 1k! @k@tk j0B('1t ; : : :'kt )�s 2 C1(F (M ));where k = k1 + � � �+ kj .Proof. Apply lemma 9 recursively. �11. Proposition. Let ' be a curve of local di�eomorphisms through IdM with�rst non-vanishing derivative k!X = @kt j0't. Then the curve of local vector �elds(@t't) � '�1t has as �rst non-vanishing derivativek!X = @k�1t j0 �(@t't) � '�1t � :Proof. Using lemma 7 for f 2 C1(M;R) we have for 1 � ` < k:@`�1t j0((@t't) � '�1t )f = @`�1t j0('�1t )�@t'�t f= `�1Xj=0 �`�1j �(@jt j0('�1t )�)(@`�jt j0'�t )f= ('�10 )�(@t̀ j0'�t )f + 0 = �k̀k!LXf: �12. Corollary. Let G be a Lie group with Lie algebra g. For g, h 2 G we considerthe group commutator [g; h] = ghg�1h�1. Then for any bracket expression B oflength k and Xi 2 g we havek!B(X1; : : : ; Xk) = @kt j0B(exp tX1; : : : ; exp tXk)= @k�1t j0 �T�B(exp tX1;:::;exp tXk)�1)(@tB(exp tX1; : : : ; exp tXk))� ;where �g denotes left translation by g.The �rst equation is a generalization of the well known `Trotter product for-mula', i. e. the case of B = [ ; ].Proof. The 
ow of the left invariant vector �eld LX corresponding to X 2 g isthe right translation �exp tX by exp tX, so we just apply theorem 1 to getk!B(LX1 ; : : : ; LXk) = @kt j0B(�exp tX1 ; : : : ; �exp tXk)= @kt j0�(B(exp tX1; : : : ; exp tXk));(1)



236 MARKUS MAUHART AND PETER W. MICHORwhere in the �rst line the commutator of 
ows is applied, and in the second linethe group commutator with reversed order. Evaluating both sides at e 2 G givesthe �rst formula. From (1) and proposition 11 we getk!B(LX1 ; : : : ; LXk) == @k�1t j0 �(@t�(B(exp tX1; : : : ; exp tXk))) � �(B(exp tX1; : : : ; exp tXk))�1� :We evaluate this at e 2 G and getk!B(X1; : : : ; Xk) == @k�1t j0 �(@t�(B(exp tX1; : : : ; exp tXk)))(B(exp tX1; : : : ; exp tXk)�1)�= @k�1t j0 �T�B(exp tX1;:::;exp tXk)�1)(@tB(exp tX1; : : : ; exp tXk))� : �References[FK] Fr�olicher, A., Kriegl, A., Linear spaces and di�erentiation theory, Pure and Applied Math-ematics, J. Wiley, Chichester, 1988.[KMS] Kol�a�r, I., Michor, P. W., Slov�ak, J., Natural operators in di�erential geometry, to appear,Springer-Verlag.[KMa] Kriegl, A., Michor, P. W., A convenient setting for real analytic mappings, Acta Mathe-matica 165 (1990), 105{159.[KMb] Kriegl, A., Michor, P. W., Aspects of the theory of in�nite dimensional manifolds, Dif-ferential Geometry and Applications 1(1) (1991).[KMc] Kriegl, A., Michor, P. W., Foundations of Global Analysis, A book in the early stages ofpreparation.[KN] Kriegl, A., Nel, L. D., A convenient setting for holomorphy, Cahiers Top. G�eo. Di�. 26(1985), 273{309.[M] Mauhart, M., Iterierte Lie Ableitungen und Integrabilit�at, Diplomarbeit, Universit�at Wien,1990.[T] Terng, Chu Lian, Natural vector bundles and natural di�erential operators, American J. ofMath. 100 (1978), 775{828.Markus Mauhart and Peter W. MichorInstitut f�ur MathematikUniversit�at Wien, Strudlhofgasse 4A-1090 Wien, AustriaE-mail: MICHOR@AWIRAP.BITNET
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