[1] M. Adleг, J. Moser:
On a Class of Polynomials Connected with the Korteweg-de Vries Equation. Commun. math. Phys. 61 (1978), 1-30.
MR 0501106
[2] J. L. Burchnall, T. W. Chaundy: A set of differential equations which can be solved by polynomials. Proc. London Math. Soc. 30 (1929-30), 401-414.
[3] J. Hadamard: Lectures on Cauchy's Problem. Yale University Press, New Haven, 1923.
[4] J. E. Lagnese:
A New Differential Operator of the Pure Wave Type. J. Diff. Equ. 1 (1965), 171-187.
MR 0206504 |
Zbl 0134.31102
[5] J. E. Lagnese:
The Structure of a Class of Huygens' Operators. J. Math. Mech. 18 (1969), 1195-1201.
MR 0243204 |
Zbl 0185.18602
[6] R. Schimming: Korteweg-de Vries-Hierarchie und Huygenssches Prinzip. Dresdener Seminar zuг Theoretischen Physik Nr. 26, 1986.
[7] R. Schimming:
An explicit expression for the Korteweg-de Vries hierarchy. Zeitschrift f. Аnalysis u. ihre Аnw. 7 (1988), 203-214.
MR 0951118 |
Zbl 0659.35089