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A FORMAL SERIES SOLUTION 
OF THE ONE-DIMENSIONAL SCHRÖDINGER 

EQUATION 

RAINER SCHIMMINO 

(Received June 4, 1987) 

Abstract. An asymptotic expansion of the solution y of the initial value problem to the one-
dimensional Schrodinger equation y" + uy =-» 0 is derived. If the potential u is analytic or if the 
expansion has only fiiitely many terms then the formal series represents an effective solution. 
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sion, formal solution. 
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INTRODUCTION 

Let us consider the one-dimensional Schrodinger operator, sometimes also 
called Sturm-Liouville operator, 

(1) L:=^- + u, 
dx2 

with a smooth potential u = M(X). (Here and in the following smooth means C*.) 
We associate to the initial-value problem 

Ly = y" + uy « 0, 
(2) 

.K*o) = yo, / ( *o) --Vo 

the sequence of two-point functions Yn == Yn(x, x0) (n -» 0,1, 2,...) which is 
uniquely defined by the recursion 

( 3 ) 2(x - x0) n-g^Ym + n(n - 1) Yn + LT^2 - 0 for n £ 2, 

Y0 :~y0> Yt :~y'Q. 
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The main result is that the solution of (2) admits the asymptotic expansion 

(4) y ~ ' f i ; . ( * - * o ) " forx-+x 0 . 
i t - - 0 

The formal scries on the right-hand side of (4) turns into an effective solution of (2) 
if u = u(x) is an analytic function or if the sequence Yn = Y„(x, x0) breaks off 
(that means, reduces to zero) after a finite number of terms. We will demonstrate 
both these possibilities by examples. 

The idea for (4) has been to find a one-dimensional analog of J. Hadamard's 
classical construction of an elementary solution to a second-order linear partial 
differential equation [3]. J. E. Lagnese [5] used such an analogy for writing down 
a distributional fundamental solution to L. We will work here with functions, not 
with distributions. The quantities Y2m+1 with an odd index 2m + 1 are directly 
analogous to Hadamard's coefficients Um, while the quantities Y2m with an even 
index 2m are introduced here for the first time. The author has reviewed in the 
papers [6, 7] the relevance of the sequence Y2m+1 (m -= 0,1, 2,...) for spectral 
theory and Huygens' principle. Moreover, the diagonal values Y2m+1(x, x) have to 
do with the Korteweg-de Vries hierarchy of solitonic partial differential equa­
tions [6, 7]. 

DERIVATION OF THE ASYMPTOTIC EXPANSION 

A linear differential operator of the form 

(5) Dn := 2(x - x0) - p + n with n > 0, 

acting on functions of x which are smooth in the vicinity of x 0 , has a unique 
inverse Dn

l. More precisely, there holds. 

Proposition 1. Let / «f(x) be defined and smooth in some open interval 
containing x 0 and n > 0. Then Dny = / has a unique smooth solution y ** y(x) 
in domf, given by 

(6) 2y(x) - j X**2 ~ lf(Xx + (1 - X) x0) dX. 
. ' o 

(Here and in the following dom means domain of definition.) 
Proof. For w ^ 2 w e verify 

A.? = ] [A"20C - Xo)f + I r ' 2 " 1 / ] ^ 

/^[A"/Y]dЛ = /W, 



where the argument of the functions under the integrals is Ax + (1 — A) x0. For 
0 < n < 2 the integral in (6) is improper, the mean value theorem of differential 
calculus is used to justify 

(7) Dn J A"/2 ~ V <U == J An/2 " lDJ dA. 

o o 

If both yi9 y2 solve Dny = / then the difference y := yt - y2 obeys for x + x0 

2(x - x0) | x - x0 r'2 (| x - x0 |
w/2 y)' = £)„); = 0. 

This proves the unicity y = 0, yx = y2. 
From now on, the potential u = u(x) is assumed to be defined and smooth in 

some open interval. 

Definition 1. The two-point functions Yn = Yn(x9 x0) (n = 0, 1, 2,...) are the 
unique smooth solutions in (dom u) x (dam u) 0/ ffee differential-recursion scheme 

(8) nLVt 7rt +LYn.2 = 0 for n = 2, 

(9) y 0 : = y o , r i : = y o . 

Here the differential operators Dn_l9 L refer to the first argument x. 
According to proposition 1, we may formally write 

7 n = -(nD^T1 LYn~2 forn = 2 

and the linear operator D~^t does not diminish the domain of definition and 
smoothness; therefore dom Yn can be chosen independent of n. The recursion 
(8), (9) starts with constant functions Y0, Yt and decomposes into subschcmes 
for Y2m (m = 0, 1, 2,...) anc| Y2m+l (m = 0, 1, 2,...) respectively. 

Let us now consider the general initial-value problem 

(10) Ly = 0, y(x0) = y0i yf(x0) = y'0f 

together with the special initial-value problems 

(11) Ly+ = 0, y+(x0) = y09 y'+(x0) = 0, 

(12) " Ly- = 0, y.(x0) = 0, yl(x0) = yf
0. 

For each x0 e dom u the problems (11), (12) admit unique smooth solutions y+ -* 
=-= y+(x)9 y_ = y_(x) in some open subinterval dom)>+, domy„ respectively 
of dom u. These compose to a solution of problem (10) 

y := y+ + y„ in damy := (dom y+) n (domyj). 

Definition 2. The two-point functions Rn = Rn(x, x0) (n = 0,1, 2,...) flr#, tfc* 
unique smooth solutions of the differential-recursion scheme 
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(13) (» - 2) DH+lRH + LR„-2 = 0 for n £ 3, 

R 0 : = y + , (x - x0)R. :=>>-, 
(14) , 

(x - x0YR2 :=y+ - y0. 
Here the differential operators D„+i, L refer to the first argument x. 

Taylor's theorem applied to y+,y- shows that the start conditions (14) define 
smooth functions R0,Rit R2 indeed. We may formally write 

R„ -. -((n - 2) D^.)" 1 LRH-2 for n £ 3. 

The recursion equation (13) decomposes into a separate equation for R2m (m -= 
=- 0, 1, 2, ...) and another for K2m+i (m = 0, 1, 2,...). For fixed x0edomu we 
can take independent of m = 0,1, 2,... 

dom JR2W(., x0) = d0my+,dowR2m+1(.,x0) = domy-. 

Theorem 1. For each m = 0, 1, 2,... ffcere Jio/ds 

(15) y+ = m i Y2*. (x - x0)
2* + R2m . (x - x0)

2m, 
* * 0 

(16) y. =- £ Y2t+1 . (x - x 0 ) : i + 1 + R2m+i .(x -x 0 ) 2 m + 1 . 
ft--0 

.4s a consequence, for each n = 0, 1, 2,. , fftere fco/ds 

(17) y JtJjYk . (x ~ x0)
k + RH.(x- x0)\ 

* - 0 

Proof. We show that the two-point functions 

ZH := RH - . (x - >c0)
2 RB+2 for n £ 2 

fulfil the defining equations (8), (9) of the 7B. Considering that 

DH.iZn - D , . , ; ^ - (x - x0Y D,,+3R„+2, 

J-ZB_2 = LR-.2 - 2DrRH - (x - x0)
2LRH, 

nDn-1R„-2DiRH = (n-2)DH+1RH, 

we obtain for n ^ 2 
nDn.iZH +LZ„.2 = 

' • - (n - 2) DB+,«„ + LR,,„2 - (x - x0Y (nDB+3RB+2 + LRn) - 0. 

The start condition Z0 = j>0 directly follows from (14), while the calculation 

D0Zt = DoRi- (x - x0)
2 D4Rs - D^ + (x - x0)2 LRt » 

(x - x0)L((x - x9) R.) - (x - x0)2.y_ =- 0 
\ 

rø 



shows that 
Zj = const = JR^Xo* xo) = yo-

Since the system (8), (9) has only one solution, there holds for n = 0, 1, 2, . . . , Zn =-
= Yn or 

Rn = Yn + (x - x0)2KB+2. 

Now a simple mathematical induction gives 
m - l 

*o = I Y7k. (x - x0)2t + R2m • (x - x0)
2m, 

jfc = 0 

m - l 

-^1 = 1 >2*+l • (X - X 0 ) 2 k + Rlm+l .'(X - X 0 ) 2 M , 
Jc = 0 

which is equivalent to (15), (16). 
. ^We have just derived asymptotic expansions for x -• x0 

y+~t Y2m.(x-x0)
2m, 

m-0 

y-~tYim+t-(x-x0)
2m+i, 

m-0 

y ~£ Yn.(x-x0y. 
n~0 

These will convert into representations of functions by convergent series 

(18) y+ = f Y2m . (x - x0)2w, 
m=-0 

(19) >>_ = £ Y2m+1.(x-x0)
2m+1, 

m=-0 

(20) y = f y „ . ( x - x0)" 
i»--0 

in two situations: 
(i) If u = u(x) is analytic then (18), (19), (20) represent analytic functions for 

sufficiently small | x — x0 |. 
(ii) If some function Y2m or Y2m+i vanishes then all the following terms Ylk 

or Y2k+1 respectively for k -= m + 1, m + 2,... vanish too and the series (18) 
or (19) reduces to a finite sum. 
A version of (i) is made precise by v ' 

Theorem 2. Let the potential u =* u(x) be defined and analytic in some open 
interval. Then each Yn = yB(x, x0) (* « 0,1,2,...) is defined and analytic in 
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(dom u) x (dom u). Further, there exists a neighbourhood of the diagonal of(dom u) x 
x(domu) where the series (20) converges and represents an analytic solution of the 

initial-value problem (10). 
Sketch of the proof. The linear operators DW,D~1, L act in the space of 

two-point functions which are defined and analytic in (domu)x(domu). The 
lowest terms Y0 and Yt are constant functions and therefore analytic, the analy-
ticity of 

Yn= -(nD^y1 LYn-2 for n = 2 

follows by mathematical induction. The convergence of the series (20) for points 
x9 x0 m which are sufficiently near to each other can be shown by means of the 
"method of majorants" in analogy to J. Hadamard's construction of the elementary 
solution to a second order linear partial differential operator with analytic coeffi­
cients [3], We omit the details because only technical modifications are necessary 
to adopt the method to the present situation. Finally, it is verified that (20) 
solves (10): 

Ly = f (nDn^Yn + LYn„2) (x - xor
2 = 0; 

n = 2 

the initial conditions are obvious. 

EXAMPLES 

1. If the potential is u = const = +co2 = 0 then it is easy to find 

um um 

^—frfr'0' T ' - " " (2m + 1)! y° f ° r " = °' 1 ' 2 " " 

With this, the problem 

y". + a>2y = 0, co * 0, >>(0) = >>o, / (0) = yj 
is solved by 

y = £ үn •* и = J>O c o s æx + УÓ<°~ s i n æx-
n*-0 

Analogously, the problem 

y* ~ co*y « 0, co # 0, y(0) =- y09 y'(0) = y0 

is solved by 

y ~ Z Y» • x ^ yocosh <°x + y ^ s i n h wx-
w«0 
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2. For the operator 

\dx x)\<ix x) dx2 x2 

mathematical induction shows 

p-+i)(^)r,...-(;)(• ;-)*-*.-% 

Initial value problems are better solved directly, making use of the fundamental 
system x"+1, x"" of solutions of Ly = 0. If, particularly, n is a positive integer 
then Y2mfi = 0 for m ̂  n + 1. The example may be slightly generalized by 
a translation x +-> x — xt, x0 *-* x0 — xx. 

We have been able to find all potentials u -= «(x) satisfying Y4(x, 0) = 0 or 
Y5(x, 0) = 0 respectively. For these the expansions (18), (19) shrink to 

y+ = y0 + Y2(x9 0) x2 or y_ == y^x 4- Y3(x, 0) x3 

respectively and produce explicit solutions in terms of elementary functions and 
Bessel functions. We omit this list of potentials and present under 3. and 4. two 
simple cases only. Clearly, the examples could be treated by verification or by 
other methods. They serve here to illustrate our theoretical results. Note that 
each of the conditions Y2(x, 0) 5 0 or Y3(x, 0) = 0 implies vanishing potential 
u(x) = 0, i.e. does not produce new examples. 

3. The problem 

(•&-°)(-& + 9)y-°- - = 2x(x2 + o)-1 , 

y(0) = 1, y'(0) = 0, a = const # 0 , 

is solved by 

u(x) = 2(3x2 - o ) ( x 2 +a)-2, 

Y2(x, 0) = - (x 2 + a)~\ YA(x, 0) = 0, 

y = o(x2 + a)"1. 

4. The problem 

y" - 6x(x3 - 2o) (x3 + a)~2 y = 0, 

y(0) = 0, y'(0) - 1, o = const # 0 , 

is solved by 

73(x, 0) - -x(x J + o)"1, y3(x, 0) = 0, 

y = ax(x3 + a)'1. 
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5. Let us insert the one-śoliton solution 

u(x, t) = 2ш2 cosh"2 (æx + 4юъt) 

of the Koгteweg-de Vries equation 

õu , дu õъu 
= ÓM------ + dt ex Ox3 

into the linear initial-value problem 

f + Uy = 0, y(x0) = 0, y'(*0) = yo-

Solving 3D2 Y3 + L Yx = 0 for Y3 = 73(x, x0) we obtain 
X 

6(x - x0) Y3 = yo J "(*> t)dz = 
xo 

= 2y0^[tanh (c0x + 4c03r) - tanh (ox0 + 4c03*)] 

and with this and some smooth two-point function R5 = -R5(x, x0) a representa­
tion 

y » y0(* - *o) + Y3 I (x - x0)3 + R5 . (x - x0)5. 

6. J. L. Burchnall and T. W. Chaundy [2] established in 1929 that the differen­
tial-recursion scheme 

can be solved by polynomials Pn = Pn(x) of degree © with highest term x®" 
This remarkable fact has been rediscovered at least twice [5, 1]. The n-th poly­
nomial depends on n ~ 1 integration constants: 

Pn = Pn(x +alfa2f. ..,«„_!). 

M, Adler and J. Moser [1] calculated in the normalization ax = 0 

P3 = x3 + a29 P4 = x6 + 5a2x
3 + a3x - 5 ^ , 

p 5 -= x10 + 15a2x
7 + 7a3x5 - 35a2a3x

2 + I75a3
2x - — at + a4x3 + a4a2. 

J. E. Lagnese [5] established a theorem which can in our context be reformulated 
as follows: Y2m+t =r 0 identically in x, x0, y0 if and only if there exist an n S m 
and a polynomial Pm such that 

d 2 

«(x)«2 T T l ogP f ) (x ) . 
dx 
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Then the initial-value problem 

Ly = 0, y(x0) = 0, ÿ(x0) -= y0 

is solved by the finite sum 

У=lV21k+1.(x-Xo)2*+1. 
*=o 

In the earlier paper [4] J. E. Lagnese treated (using other notations, of course) 
the example 

P3(x) = x 3 - 1, «(x) = 2 -—-log P3(x); 

he explicitly calculated Y3 and Y5. We recognize our example 4 with a -= —1. 
For the trivial choice of the parameters oyr example 2 emerges from Lagnese's 

theorem [5]: 

Pfl + 1(x) = x n ( r t + 1 ) / 2, . u(x) - -n(n + 1) x~2. 
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