Previous |  Up |  Next

Article

References:
[13] E. Engels W. Sarlet: General solution and invariants for a class of lagrangian equations governed by a velocity-dependent potential energy. J. Phys. A: Math., Nucl. Gen. 6 (1973), 818-825. MR 0418700
[14] P. Havas: The range of application of the Lagrange formalism I. Nuovo Cimento (Suppl.) 3 (1957), 363-388. MR 0090972 | Zbl 0077.37202
[15] D. Kгupka A. E. Sattaгov: The inverse problem of the calculus of variations for Finsler structures. Math. Slovaca (35) 3 (1985), 217-222. MR 0808354
[16] O. Kгupková: Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity. Arch. Math. (Bгno) 2 (1986), 97-120. MR 0868124
[17] J. Novotný: On the inverse variational problem in the classical mechanics. Pгoc. Conf. Diff. Geom. Appl. 1980, Charles University of Prague (1981), 189-195. MR 0663225
[18] R. M. Santilli: Foundations of Theoretical Physics I., The Inverse Problem in Newtonian Mechanics. Springeг Verlag, New Yoгk 1978. MR 0514210
[19] W. Saгlet: On the transition between second-order and first-order systems within the context of the inverse problem of Newtonian mechanics. Hadronic J. 2 (1979), 407-432. MR 0529840
[20] W. Sarlet: The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics. J. Phys. A: Math. Gen. 15 (1982), 1503-1517. MR 0656831 | Zbl 0537.70018
[21] O. Štěpánková: The local inverse problem of the calculus of variations in higher order Hamiltonian mechanics. Geometгical Methods in Physics, Pгoc. Conf. Diff. Geom. Appl., Sept. 1983, J. E. Puгkyně University, Bгno (1984), 275-287. MR 0793216
[22] E. T. Whittaker: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies with an Introduction to the problem of Three Bodies. 2-nd Ed. Cambгidge, the Univeгsity Pгess, 1917. MR 0992404
Partner of
EuDML logo