[1] I. M. Anderson T. Duchamp:
On the existence of global variational principles. Amer. J. Math. 102 (1980), 781-868.
MR 0590637
[2] P. Dedecker:
Le théorème de Helmholtz-Cartan pour une intégrale simple d'ordre superieur. C. R. Acad. Sci. Paris, Sér. A, 288 (1979), 827-830.
MR 0535646 |
Zbl 0404.49038
[3] Th. de Donder: Théorie invariantive du calcul des variations. Gauthier-Villars, Paris, 1930.
[4] H. Goldschmidt S. Sternberg:
The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier (Grenoble), 23 (1973), 203-267.
MR 0341531
[5] L. Klapka:
Euler-Lagrange expressions and closed two-forms in higher order mechanics. Geometrical Methods in Physics, Proc. Conf. Diff. Geom. Appl., Sept. 1983; J. E. Purkyně University, Brno, 1984, 149-153.
MR 0793205
[6] D. Krupka: Some geometric aspects of variational problems in fibered manifolds. Folia Fac. Sci. Nat. UJEP Brunensis XIV (1973), 1-65.
[7] D. Krupka:
On the local structure of the Euler-Lagrange mapping of the calculus of variations. Proc. Conf. Diff. Geom. Appl., Sept. 1980; Charles University, Prague, 1981, 181-187.
MR 0663224
[8] D. Krupka:
Lepagean forms in higher order variational theory. Proc. IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, June 1982; Acad. Sci. Turin 117 (1983), 197-238.
MR 0773488
[9] D. Krupka:
On the higher order Hamilton theory in fibered spaces. Geometrical Methods in Physics, Proc. Conf. Diff. Geom. Appl., Sept. 1983; J. E. Purkyně University, Brno, 1984, 167-183.
MR 0793207
[10] D. Krupka J. Musilová:
Hamilton extremals in higher order mechanics. Arch. Math. (Brno) 20 (1984), 21-30.
MR 0785043
[11] D. Krupka O. Štěpánková:
On the Hamilton form in second order calculus of variations. Proc. Internat. Meeting "Geometry and Physics", Florence, Oct. 1982; Pitagora Editrice Bologna (1983), 85-101.
MR 0760838
[12] A. L. Vanderbauwhede:
Potential operators and the inverse problem of classical mechanics. Hadronic Journal 1 (1978), 1177-1197.
MR 0510098 |
Zbl 0431.47033